EKG Morphology Lecture

1. Rate

2. Wide or Narrow Rhythm?

Reg

Irreg-Irreg

P-QRS relationship?

PR interval constant?

P waves upright II/III/F?

P- waves seen?

Are P waves same or different?

Patterned

What is the pattern?

Eval P waves & QRS

What is the origin or the pattern?

What is the underlying rhythm and what interupts?

3. Morphology

Axis

Pwave / PR

QRS (tall? / wide?)

ST- T – Q waves (Inf, Ant, Lat)

- NL= -30 to 105

RULES

- +I / +F normal

- +I / -F to the left

- Neg in II to be true LAD

Fig. 1-3. (A) Einthoven's equilateral triangle formed by leads I, II, and III. (B) The unipolar limb leads are added to the equilateral triangle. (C) The hexaxial reference system derived from B.

-NL= -30 to 105

-Assess if the QRS is positive in lead I

- NL= -30 to 105

- Assess if the QRS is positive in lead I
- Assess if the QRS is positive in lead F

Fig. 1-3. (A) Einthoven's equilateral triangle formed by leads I, II, and III. (B) The unipolar limb leads are added to the equilateral triangle. (C) The hexaxial reference system derived from B.

- NL= -30 to 105
- Assess if the QRS is positive in lead I
- Assess if the QRS is positive in lead F

Fig. 1-3. (A) Einthoven's equilateral triangle formed by leads I, II, and III. (B) The unipolar limb leads are added to the equilateral triangle. (C) The hexaxial reference system derived from B.

- NL= -30 to 105

- Assess if the QRS is positive in lead I
- Assess if the QRS is positive in lead F
- -If +I and +F then axis is normal

Fig. 1-3. (A) Einthoven's equilateral triangle formed by leads I, II, and III. (B) The unipolar limb leads are added to the equilateral triangle. (C) The hexaxial reference system derived from B.

- NL= -30 to 105

- +I / +F normal

- +I / -F the axis is leaning to the left

-Problem:

You can still have a normal axis from 0° to minus 30°

Fig. 1-3. (A) Einthoven's equilateral triangle formed by leads I, II, and III. (B) The unipolar limb leads are added to the equilateral triangle. (C) The hexaxial reference system derived from B.

- NL= -30 to 105

- +I / +F normal

- +I / -F to the left

-You can still have a normal axis from 0° to 30°

- Neg in II for true LAD

-Meaning axis is past minus 30°

Fig. 1-3. (A) Einthoven's equilateral triangle formed by leads I, II, and III. (B) The unipolar limb leads are added to the equilateral triangle. (C) The hexaxial reference system derived from B.

ID: 30531482376 6-Jan-1998 16:22:48 55 MDOS

62

ADRIOTHER SOA

Technician: SB

SO THIS IS TRUE LEFT ACCESS DEVIATION

RHYME for LAD:

Positive in I and Negative if F, axis is to the left

Negative in lead II to be true LAD

P-wave Morphology

RULES

-LAE

Lead II- wide p wave 2½ blocks wide

V1- deep inversion at end of the p-wave / "terminal negativity

-RAE

Lead II- tall p wave 2½ blocks tall

V1- peaked intial portion of p wave

LEADS V_1 Ш RAE Α LAE В RAE LAE

gure 4.1. The changes in P wave morphology, typical of atrial enlargement as they appear leads II and V1. **A.** Right atrial enlargement (*RAE*). **B.** Left atrial enlargement (*LAE*). **C.** atrial enlargement (*RAE* + LAE).

INTERPRET EKG

NSR, left ward axis / LAE

- 1. Rate
- 2. Rhythm

Reg Irreg-Irreg Patterned

- 3. Morphology
 - a. Axis
 - b. P-wave
 - c. PR interval (normal <.2sec)
 - d. QRS (tall? / wide?)
 - e. STsegments & T waves & Q waves (Inf, Ant, Lat)

1° AV Block

 General Rule: PR interval should be less than .2 sec or 200msec

Equal to one large block on the EKG

Measure from the beginning of Pwave to beginning of QRS

INTERPRET EKG

NSR, 1° AV Block, RAD, Lae & Rae, (RVH also)

- 1. Rate
- 2. Rhythm

Reg Irreg-Irreg Patterned

- 3. Morphology
 - a. Axis
 - b. P-wave
 - c. PR interval (normal <.2sec)
 - d. QRS (wide? Or tall?)
 - e. STsegments & T waves & Q waves (Inf, An

LBBB Criteria

Prolonged QRS >.12sec (3 small blocks)

Deep S wave (qS or rS) in V1

LBBB Criteria

Prolonged QRS >.12sec (3 small blocks)

Deep S wave (qS or rS) in V1

Monophasic R in I / V6

RBBB Criteria

Prolonged QRS >.12sec (3 small blocks)

- M shaped QRS / rSR′ in V1
 - Simple rule: if you see a wide QRS and an R in V1 it is RBBB
 - R is for Right Bundle Branch Block
- Wide S at end of QRS in I / V6

Interpret EKG

Afib // LBBB

Interpret EKG

Regular Rhythm / short PR, LBBB

Interpret EKG

Rhythm strip – same patient

Rhythm strip from the same patient earlier

2° AVB Mobitz type 2, Left Axis Deviation, RSR′ in lead V1 = RBBB / LAFB?

- 1. Rate
- 2. Rhythm

Reg Irreg-Irreg Patterned

- 3. Morphology
 - a. Axis
 - b. P-wave
 - c. PR interval (normal <.2sec)
 - d. QRS (wide? / tall?)
 - e. STsegments & T waves & Q waves (Inf, Ant, Lat)

 EKG = useful but imperfect tool for detecting LVH.

EKG = inexpensive and widely available.

 The limitations of EKG = moderate sensitivity and specificity

- Increased QRS Voltage
- Increased QRS duration ("kinda wide" not BBB)
- Leftward QRS axis
- Left atrial enlargement
- Repolarization abnormality (strain change in ST-T)

- Two main Voltage rules:
 - S wave in V1 & R wave in V5 or V6 ≥35mm
 - Most common
 - Overly sensitive in young folks / especially male
 - R wave in aVL ≥ 11mm
- These = Sokolow-Lyon indices

- Estes-Romhilt Criteria
 - Scoring system to gauge likelihood of LVH
 - More complicated and generally no used clinically by the average practicing physician
 - SEE EXAMPLE next slide

Romhilt-Estes point score system for ECG diagnosis of LVH

Criterion	Points
Any limb R ware or S wave ≥2.0 mV (20 mm)	
OR S in V1 or S in V≥ 3.0 mV (30 mm)	3
OR R in V5 or R in V6≥3.0 mV (30 mm)	
ST-T wave changes typical of LVH	2
Taking digitalis	1
Not taking digitalis	3
Left atrial abnormality	
P terminal force in V1 is 1 mm or more in depth with a duration 40 ms	(0.04 sec)3
Left axis deviation ≥-30°	2
QRS duration ≥90 ms	1
Intrinsicoid deflection in V5 or V6≥50 ms (0.05 sec)*	1

A score of 5 or more indicates "definite" LVH; a score of 4 indicates "probable" LVH.

Score of 5 = "definite" LVH

Score of 4 = "probable" LVH

^{*} Intrinsicoid deflection is defined as interval between beginning of QRS interval and the peak of the R wave.

- Increased QRS Voltage
- Increased QRS duration (not BBB)
- Leftward QRS axis
- Left atrial enlargement
- Repolarization abnormality (strain change in ST-T)

• Qs, STs, Ts

NSR / Normal QRS axis

Pwave morphology normal / somewhat short PR interval

No BBB / Voltage criteria for LVH = S in V1 + R in V5 > 35 & aVL > 11

ST & T wave change diffusely c/w LVH Strain but can't R/O ischemia

INTERPRET EKG: Rate = 85 / Reg Rhythm = P-QRS relation? Are there Pwaves?..... Are these T waves? Junctional? Sinus? (Next slide)

INTERPRET EKG: Rate = 85 / Reg Rhythm = P-QRS relation? Are there Pwaves?.....

INTERPRET EKG: Rate = 85 / Reg Rhythm = P-QRS relation? YES! Normal Sinus Rhythm with 1° AV block. Normal Axis. Pwave morphology OK. No BBB. Probable Voltage Criteria for LVH with no other criteria, Nonspecific T wave change V5, V6

INTERPRET EKG: Rate = 85 / Reg Rhythm = P-QRS relation? YES! Normal Sinus Rhythm with 1° AV block. Normal Axis. Pwave morphology OK. No BBB. Probable Voltage Criteria for LVH with no other criteria, Nonspecific T wave change V5, V6

SUMMARY= NSR with 1° AV block, Voltage Criteria for LVH. Nonspecific T wave laterally

INTERPRET EKG: Rate 80 / Reg / P-QRS = yes / Pwaves up? (see lead 2)

INTERPRET EKG: Rate 80 / Reg / P-QRS = yes / Pwaves up = yes // NSR / Axis Normal / P morphology OK / PR interval OK / BBB? – NO / Voltage? – NO / Q- ST – T wave?....

INTERPRET EKG: Rate 80 / Reg / P-QRS = yes / Pwaves up = yes // NSR / Axis Normal / P morphology OK / PR interval OK / BBB? – NO / Voltage? – NO / Q- ST – T wave = ST Depression inferiorly,

INTERPRET EKG: Rate 80 / Reg / P-QRS = yes / Pwaves up = yes // NSR / Axis Normal / P morphology OK / PR interval OK / BBB? – NO / Voltage? – NO / Q- ST – T wave = ST Depression inferiorly, ST ELEVATION V1-V2 with Q's and HYPERACUTE T V3-V4

INTERPRET EKG: Rate 80 / Reg / P-QRS = yes / Pwaves up = yes // NSR / Axis Normal / P morphology OK / PR interval OK / BBB? – NO / Voltage? – NO / Q- ST – T wave = ST Depression inferiorly, ST ELEVATION V1-V2 with Q's and HYPERACUTE T V3-V4

SUMMARY: NSR, Acute Anterior wall MI (early) with reciprocal changes inferiorly

SAME PATIENT AS THE PRIOR EKG.

HOW HAS THE EKG CHANGED?

Primarily we see the progression of the acute anterior MI with Q waves developing now in V3-V4 as well as ST elevation to replace the hyperacute T wave.

NSR, 1° AV block, horizontal axis near 0°, Q waves with ST elevations II/III/F and V5- V6 = Acute Inf-Lat Wall MI with reciprocal ST depression in AVL

