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Abstract

Predictive models are increasingly used to make various con-
sequential decisions in high-stakes domains such as health-
care, finance, and policy. It becomes critical to ensure that
these models make accurate predictions, are robust to shifts in
the data, do not rely on spurious features, and do not unduly
discriminate against minority groups. To this end, several ap-
proaches spanning various areas such as explainability, fair-
ness, and robustness have been proposed in recent literature.
Such approaches need to be human-centered as they cater to
the understanding of the models to their users. However, there
is little to no research on understanding the needs and chal-
lenges in monitoring deployed machine learning (ML) mod-
els from a human-centric perspective. To address this gap,
we conducted semi-structured interviews with 13 practition-
ers who are experienced with deploying ML models and en-
gaging with customers spanning domains such as financial
services, healthcare, hiring, online retail, computational ad-
vertising, and conversational assistants. We identified vari-
ous human-centric challenges and requirements for model
monitoring in real-world applications. Specifically, we found
that relevant stakeholders would want model monitoring sys-
tems to provide clear, unambiguous, and easy-to-understand
insights that are readily actionable. Furthermore, our study
also revealed that stakeholders desire customization of model
monitoring systems to cater to domain-specific use cases.

1 Introduction

Machine learning (ML) is increasingly playing an integral
role in our day-to-day experiences. Increasingly, the applica-
tions of ML are no longer limited to search and recommen-
dation systems, such as web search and movie and product
recommendations, but ML is also being used in decisions
and processes that are critical for individuals, businesses,
and society. With ML based solutions and pipelines in high-
stakes applications such as hiring, lending, criminal justice,
healthcare, and education, the resulting personal and profes-
sional implications of ML are far-reaching. Consequently,
it becomes critical to ensure that the underlying ML mod-
els are making accurate predictions, are robust to shifts in
the data, are not relying on spurious features, and are not
unduly discriminating against minority groups. This emerg-
ing field, called model monitoring, can be viewed as part
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of a broader ML model governance (Kurshan, Shen, and
Chen/|2020) and responsible ML framework (Arrieta et al.
2020), and is at an inflexion point, as evidenced by legal/reg-
ulatory requirements, requirements from the perspective of
web-scale ML applications, and adoption of practical and
scalable approaches. Model monitoring is receiving greater
attention in light of regulations such as EU GDPR, CCPA,
and the EU Trustworthy A]F_] initiative and several ML de-
ployment failures in practice.

From an operational angle, large-scale ML systems re-
quire maintenance not only by the virtue of possessing soft-
ware code but also because of the nuances of ML as a do-
main itself (Sculley et al.|[2015). ML-specific nuances in-
clude dependency on data whose distributions can shift dur-
ing production from when the model was designed and the
dependency of a model on another model’s output which
can cascade issues from the other model onto the depen-
dent model (Sculley et al.|2015). Such nuances imply that
maintenance of ML systems requires monitoring its various
aspects, such as data and models. Such monitoring is essen-
tial to ensure that the model does not become stale or de-
grade in performance due to changing real-world conditions
or changes in the data collection process and data process-
ing pipelines. In Figure |1} we illustrate the various activi-
ties in the lifecycle of an ML model and highlight the fo-
cus of this work in the monitoring activity. More broadly,
the emerging field of model monitoring pertains to practices
for deploying and maintaining ML models in production re-
liably and efficiently (Mikinen et al.|2021). Monitoring of
deployed ML models is needed to determine how often the
model needs to be retrained and handle the following is-
sues: (1) Data drift: The distribution of features may change
over time, causing the quality of predictions made by the
model to gradually degrade (Breck et al.|2019). (2) Changes
in the relationships between input and target variables: The
changes in real-world conditions may alter the relationships
between input and target variables (often referred to as “con-
cept drift” (Gama et al.|[2014} |Tsymbal|[2004)), and thereby
result in degraded model performance. (3) Data integrity and
operational challenges: Compared to traditional software,
ML models are more tolerant to unintended or unexpected
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Figure 1: Various activities during ML model life cycle and the focus of this work.

changes in their inputs, and hence may continue to make pre-
dictions, even when the inputs may have been corrupted. As
a result, the predictions may be erroneous or of poor qual-
ity. Thus, it is essential to ensure data integrity and detect
any undesirable changes in the data pipeline (e.g., changing
the measurement unit of a feature from feet to yards). (4)
Reduced performance for subgroups of users: Although the
model performance may not change as a whole, it is pos-
sible for the model to exhibit poor performance for certain
subgroups of users (for whom, say, the relationship between
input and target variables may have changed). Hence, in ad-
dition to monitoring overall accuracy and other performance
measures, it is important to ensure that the model does not
develop bias, and instead performs well across various sub-
groups of users.

We note that the above issues are of interest not only
for data scientists but also for ML engineers, product man-
agers, business decision makers, policy, compliance, and le-
gal teams, internal and external auditors, and other stake-
holders. In other words, given the importance of model mon-
itoring as part of a broader Al model governance framework,
model monitoring need to be human-centered not just in
terms of usability by humans but also accounting for human
behavior (Shneiderman2021}; |Wing|2021). In this work, our
goal is to understand the needs and challenges in monitor-
ing deployed ML models from a human-centric perspective.
This perspective is absolutely critical and is missing from
existing literature.

Key Contributions: The goal of our study is to unearth
practical and real-world challenges that are often encoun-
tered in real-world settings employing machine learning
models. We conducted semi-structured interviews with 13
practitioners who are experienced with deploying ML mod-
els and engaging with customers spanning domains such as
financial services, healthcare, hiring, online retail, computa-
tional advertising, and conversational assistants. We identi-

fied various human-centric challenges and requirements for
model monitoring in real-world applications. Specifically,
we found that relevant stakeholders would want model mon-
itoring systems to provide clear, unambiguous, and easy-to-
understand insights that are readily actionable. Furthermore,
our study also revealed that stakeholders desire customiza-
tion of model monitoring systems to cater to domain-specific
use cases.

2 Related Work

This work lies at the intersection of several emerging ar-
eas of machine learning research, namely, detecting dataset
shifts, monitoring model behavior via model understand-
ing and explanations, monitoring fairness and robustness of
machine learning models, and human-centered studies and
open source tools focused on the aforementioned aspects.
Below, we discuss some of the key works across each of the
aforementioned areas.

Dataset Shifts There is a rich literature on techniques for
detecting shifts in the data (e.g., see Breck et al.| (2019);
Cormode et al.| (2021); |(Gama et al.| (2014)); [Karnin, Lang,
and Liberty| (2016)); [Tsymbal| (2004); Webb et al.| (2016);
Zliobaité, Pechenizkiy, and Gamal(2016) and the references
therein). Both verifying the validity of model inputs and de-
tecting changes in the features or model outputs are impor-
tant challenges encountered in practical ML applications.
The former is often addressed by including user-defined
tests such as tests to check if a feature value is within a spec-
ified range (Schelter et al.|[2018)). For the latter, statistical
hypothesis testing and confidence interval based approaches
have been proposed. Statistical hypothesis testing involves
checking if two given sets of samples are drawn from the
same distribution by using a test statistic. Student’s t-test
and Kolmogorov—Smirnov test are examples of commonly
used tests (Wasserman|2004; Murphy|2012). More advanced



tests such as Maximum Mean Discrepancy can also be used
for higher dimensional data (Gretton et al.|2012). As these
tests require sufficient fine-tuning (e.g., selecting the ker-
nel and its hyperparameters), confidence interval based ap-
proaches (Efron and Tibshirani|1994) are often employed for
detecting drifts in practice (Nigenda et al.[2022)). In addition
to the above approaches which are model-agnostic, special-
ized methods that leverage the model internals and the train-
ing data have also been proposed to determine the extent
of drift and take remedial steps (Garg et al.[[2020; Lipton,
Wang, and Smolal2018; Reddi, Poczos, and Smola 2015;
‘Wu et al.[2019).

Interpretability As argued by several recent
works (Doshi-Velez and Kim|2017), model understanding is
absolutely critical to ensure that ML models are relying on
appropriate features when making predictions. To this end,
model interpretations and explanations are widely being
used to monitor model behavior. Many approaches have
been proposed to directly learn interpretable models for
various tasks including classification (Letham et al.|[2015;
Wang and Rudin| 2015} |Lakkaraju, Bach, and Leskovec
2016; [Lou, Caruana, and Gehrke| 2012} Bien and Tibshi-
rani 2009) and clustering (Kim, Rudin, and Shah| [2014;
Lakkaraju and Leskovec|2016)). To this end, various classes
of models such as decision trees, decision lists (Letham
et al.|20135)), decision sets (Lakkaraju, Bach, and Leskovec
2016), prototype (case) based models (Bien and Tibshirani
2009), and generalized additive models (Lou, Caruana, and
Gehrke|2012;|Caruana et al.|2015) were proposed. However,
complex models such as deep neural networks and random
forests are often shown to achieve higher accuracy than
simpler interpretable models (Ribeiro, Singh, and Guestrin
2016); thus, there has been a lot of interest in constructing
post hoc explanations to understand their behavior.

A variety of post hoc explanation techniques have been
proposed, which differ in their access to the complex
model (i.e., black box vs. access to internals), scope
of approximation (e.g., global vs. local), search tech-
nique (e.g., perturbation-based vs. gradient-based), expla-
nation families (e.g., linear vs. non-linear), etc. For in-
stance, LIME (Ribeiro, Singh, and Guestrin |2016) and
SHAP (Lundberg and Lee 2017), are model-agnostic, local
explanation approaches that explain individual predictions
of any black box model by training a linear model locally
around each prediction. These approaches rely on input per-
turbations to learn these interpretable local approximations.
Several other local explanation methods have been proposed
that compute saliency maps which capture importance of
each feature for an individual prediction by computing the
gradient with respect to the input (Simonyan, Vedaldi, and
Zisserman| 2014} [Sundararajan, Taly, and Yan|2017; [Sel-
varaju et al.|2017; |[Smilkov et al.|2017). A number of other
local explanation methods (Koh and Liang|[2017; Ribeiro,
Singh, and Guestrin|/2018) have also been proposed in the
literature. An alternate approach is to provide a global ex-
planation summarizing the black box as a whole (Lakkaraju
et al.|2019; |Bastani, Kim, and Bastani|2017), typically using
an interpretable model.

Some recent work has shed light on the downsides of post
hoc explanation techniques. |[Rudin| (2019) argues that post
hoc explanations are not reliable, as these explanations are
not necessarily faithful to the underlying models and present
correlations rather than information about the original com-
putation. There has also been recent work on exploring vul-
nerabilities of black box explanations (Adebayo et al.|2018;
Slack et al.|2020; |Lakkaraju and Bastani2020a;|Rudin/2019;
Dombrowski et al.|[2019)—e.g., |(Ghorbani, Abid, and Zou
(2019) demonstrated that post hoc explanations can be un-
stable, changing drastically even with small perturbations to
inputs.

Fairness It is crucial to ensure that ML models de-
ployed in real-world applications do not unduly discrimi-
nate against minority subgroups. To this end, monitoring the
fairness of ML models has become common place in recent
times (Dwork et al.|[2012; [Hardt, Price, and Srebro|[2016).
The initial literature on fairness in machine learning empha-
sized heavily on outlining the precise definitions of statisti-
cal fairness (Hardt, Price, and Srebro|[2016)). Several com-
peting and contrasting notions of fairness emerged during
this phase which can be broadly categorized into: 1) group
fairness which emphasizes that protected groups should re-
ceive similar treatment as that of advantaged groups (Berk
et al. 2018 Hardt, Price, and Srebro|2016) 2) individual
fairness which requires that similar individuals to be treated
similarly (Dwork et al.[2012), and 3) counterfactual fairness
which captures the intuition that a decision pertaining to an
individual is fair if it is the same in the actual world and
a counterfactual world where the individual belonged to a
different demographic group (Kusner et al.[2017). Further-
more, various metrics have been proposed to realize each of
the aforementioned notions of fairness. For example, statisti-
cal (demographic) parity, equalized odds, equality of oppor-
tunity, and predictive parity are metrics proposed to enforce
group fairness.

There are pros and cons to each of the aforementioned
notions and metrics of fairness. For example, [Dwork et al.
(2012)) argue that the group fairness notion of statistical par-
ity leads to highly undesirable outcomes e.g., one might end
up incarcerating women who pose no safety risk to ensure
the same proportions of men and women are released. On
the other hand, Kim, Reingold, and Rothbluml (2018)) high-
light that assessing individual fairness is often hard in prac-
tice because it is hard to determine what is an appropriate
metric function to measure the similarity of two individuals.
Similarly, realizing counterfactual fairness in practice is also
non-trivial because we do not have access to the counterfac-
tuals of real world decisions i.e., there is no ground truth to
determine if someone would have been incarcerated if that
individual was a male instead of being a female and vice
versa. Furthermore, prior research has also established that
certain notions of fairness (calibration and balance condi-
tions) are fundamentally incompatible and cannot be simul-
taneously optimized (Kleinberg, Mullainathan, and Ragha-
van/2017; Chouldechoval2017).

Open Source and Commercial Tools Several open
source and commercial frameworks for monitoring deployed



ML models have been developed in recent times. Ex-
amples of such frameworks include Amazon SageMaker
Model Monitor (Nigenda et al.||2022) & Clarify (Hardt
et al.|2021)), Deequ (Schelter et al|2018)), Evidently (Ev-
1dently| |2022), Fiddler’s Explainable Monitoring (Fiddler
2022), Google Vertex Al Model Monitoring (Taly, Sato,
and Gruia|2021)), IBM Watson OpenScale (IBM|2022), Mi-
crosoft Azure MLOps (Azure|2022), and Uber’s Michelan-
gelo platform (Hermann and Balso| 2017). In contrast to
these tools and techniques, the focus of this work is on un-
derstanding the needs, requirements, and challenges associ-
ated with monitoring deployed models from the perspective
of relevant stakeholders.

Human-Centric Perspectives and User Studies There
have been several user studies and interviews to understand
the desiderata for model explanations and fairness (Doshi-
Velez and Kim!2017;|Cheng et al.[2021)). For instance, (Bhatt
et al.|2020) conducted interviews with data scientists to un-
derstand the use cases and accompanying desiderata for ex-
plaining models. On the other hand, [Lakkaraju and Bas-
tani| (2020b) carried out a user study to understand if mis-
leading explanations can fool domain experts into deploying
racially biased models, while |[Kaur et al.| (2020) found that
explanations are often over-trusted and misused. Similarly,
Poursabzi-Sangdeh et al.| (2021) found that supposedly-
interpretable models can lead to a decreased ability to de-
tect and correct model mistakes, possibly due to informa-
tion overload. [Lage et al.| (2019) used insights from rigorous
human-subject experiments to inform the design of explana-
tion algorithms. While the above works touch upon human-
centric perspectives on explainability and fairness, they do
not focus on human-centric perspectives on model monitor-
ing which is the key goal of our work.

3 Study Design

We collected desiderata data for model monitoring from 13
practitioners who are experienced with deploying ML mod-
els and engaging with customers spanning domains such as
financial services, healthcare, hiring, online retail, compu-
tational advertising, and conversational assistants. We did
so by conducting semi-structured and one-on-one interviews
virtually and analyzed the results from each interviewee.
All the interviewees had an understanding about ML model
monitoring and had interacted with various model monitor-
ing tools.

In the following, we discuss the experimental design
choices, the data collection process and the data analysis ap-
proach for the study.

3.1 Data Collection

We collected desiderata from thirteen (n=13) ML practition-
ers with expertise in the model monitoring space. We re-
cruited these participants by reaching out to ML practition-
ers who are either working on developing model monitoring
tools or needing such tools for their application use cases.
Based on an average of 2.7 years of professional experi-
ence of the interviewees within the MLOps space, we con-
sidered four to be experts, four to be beginners, and five to be

Question Motivation

1Q1: What kind of applica- | To understand domain-
tions do you use ML models | specific use cases

for?
1Q2: Why do you need | To understand domain-
model monitoring in these | specific desiderata
applications?
1Q3: What aspects of model | To understand interpreta-
monitoring do you need? tions of model monitor-
ing

1Q4: What would an ideal | To understand human-
model monitoring frame- | centered desiderata for
work look like and what do | model monitoring

you want this framework to
tell you?

Table 1: Interview Questions (IQ) for Model Monitoring in
Practice

intermediate. The interviews were semi-structured due to the
exploratory and human-centered nature of the study which
required prompting interviewees with follow-up questions
relevant to their domain-specific experiences with model
monitoring. The interview questions and their rationales are
tabulated in Table[Tl

3.2 The Choice of Subject Pool: MLOps
Practitioners

We chose ML practitioners working in the Machine Learn-
ing Operations (MLOps) space for several reasons. First,
MLOps is a relatively new and emerging field where ques-
tions such as IQ3 in Table |1 are still utilized to understand
people’s perspectives on what constitutes as model monitor-
ing as there is no set definition for it yet. Thus, MLOps prac-
titioners are well versed with model monitoring related chal-
lenges as they face them in their day to day activities. Sec-
ond, the MLOps practitioners we interviewed have experi-
ence with domain-specific use cases and would thus be able
to better articulate fuzzy application and business require-
ments. Third, MLOps practitioners develop model monitor-
ing solutions which enables them to discuss practical imple-
mentation challenges as well.

3.3 Data Analysis

We analyzed the responses to all the questions using in-
ductive content analysis (Krippendorff| |1980). The inter-
view notes were analyzed in two ways. First, each tran-
script was individually annotated for model monitoring ap-
plication areas/use cases, requirements, and challenges de-
scribed by each of the interviewees. Second, the responses
to each question mentioned in Table [1| across all interviews
were pooled and analyzed to inductively generate common
themes and categories for ML monitoring application areas,
design requirements, and challenges.

Responses to 1Q1 were identified either as a domain or
a use case. For example, phrases and words such as “finan-

9
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labeled as domains. Whereas, phrases such as “fraud detec-
tion”, “credit lending”, and “speech recognition” were la-
beled as a use case. Responses to 1Q2, 1Q3, and 1Q4 were an-
alyzed to identify human-centric desiderata for model mon-
itoring. Sentences that contained phrases such as “need to”,
“should have”, “be able to”, and “it would be great if”” were
labeled as requirements. Phrases such as “difficulty”, “chal-
lenges”, “not possible”, “hard”, and “risky” were analyzed
to identify challenges faced by the interviewees. Further, Re-
sponses to IQ3 were also analyzed to discover interviewees’
interpretation of model monitoring and what it entails. To
do so, authors’ domain knowledge of model monitoring was
leveraged to label the aspect of model monitoring discussed
by an interviewee. For example, if interviewees discussed
data drift as a part of the response to 1Q3, data drift was la-
beled as an aspect of model monitoring for that interviewee.
The 1Q3 labels across all interviewees were pooled to char-
acterize various aspects of model monitoring as discussed
by them.

4 Application Areas, Design Considerations
and Challenges for Model Monitoring:
Practitioners’ Perspectives

In this section, we discuss the use cases, requirements, and
challenges discussed by the interviewees. We begin with the
results of IQ3 analysis, where we describe various aspects of
model monitoring. Then, we discuss the results of IQ1 anal-
ysis, namely, the application areas mentioned by the inter-
viewees. Then, we discuss the interviewees’ desiderata and
challenges for model monitoring.

4.1 What is Model Monitoring? Practitioners’
Perspective

We analyzed the responses to 1Q3 contextually to identify
the key aspects of model monitoring stated by the inter-
viewees. All the interviewees discussed model performance
monitoring and data drift monitoring as a part of model
monitoring. One interviewee discussed, “we are interested
in prediction drift as a proxy for model performance.” An-
other interviewee mentioned, “Data scientists care more
about model performance, deploying more models, etc.”.
Similarly, one interviewee highlights their need for model
monitoring by mentioning, “we need tools for continuous
model monitoring to assess end-to-end impact of these [de-
sign] changes and ensure model performance.”

Five (out of thirteen) interviewees emphasized monitor-
ing model fairness, bias, and model versions as a part of
model monitoring. One interviewee said, “A subset of our
models needs fairness analysis to ensure compliance.” An-
other interviewee mentioned their interaction with a bank-
ing client as follows: “If you are a risk manager for banks,
then you probably care about fairness/bias.” One intervie-
wee discussed fairness monitoring as an aspect of model
monitoring and mentioned, “Monitoring fairness could be
another interesting addition for my clients who are at the
receiving end of regulatory constraints, fines, etc.” With re-
spect to model versioning, an interviewee stated, “At [re-
tracted organization name], we have a champion model and

| Domain | Use Case ]

AdTech Ads personalization and ads pricing.

Consumer Wake-word  detection, automatic

Technology | speech recognition, natural language
understanding and  interpretation,
entity resolution, and text-to-speech
generation.

Financial Fraud detection, credit lending, and

Services churn prediction.

Insurance Risk prediction

Retail Recommendation models and traffic
monitoring.

Table 2: Domains and use cases discussed by the intervie-
wees.

a contender model. We used things such as A/B tests to eval-
uate both the models. [This is where] I think model monitor-
ing can immensely help.”

We also noticed interviewees categorizing or grading the
relative importance of various aspects of model monitoring
as a part of the response to 1Q3. Interviewees largely iden-
tify monitoring data integrity (Boritz2005), that is, the ac-
curacy, completeness, and consistency of data for inputs and
outputs of a model as a basic requirement. One interviewee
remarked, “I think, at the very least, [we need] a system
that monitors the exhaust of the model; the outputs and also
the inputs of the model.” In addition to this, identification of
data drift, performance drift, and outlier detection were men-
tioned as important but intermediate requirements for model
monitoring. Another interviewee stated, “On top of basic in-
put output monitoring, another aspect is model performance
from accuracy and precision point of view.” Finally, moni-
toring model fairness and bias were expressed as regulation
driven, “good to have”, and are thus labeled as advanced re-
quirements for model monitoring.

4.2 Application Areas and Use Cases

Analyzing responses to IQ1 enabled us to identify spe-
cific domains and use cases of interest to the interviewees
as shown in Table 2| Some example excerpts include: “of
course, classic are fraud, churn use cases, and recommen-
dation for anything [in] retail.” Another interviewee states,
“our primary market is financial services and fintech, we
have some retail, but insurance is clearly a new area where
we are seeing new interest.” Regarding the financial ser-
vices domain, one interviewee specifically mentioned that
“they’re [financial services domain] the most advanced with
the use of machine learning or they have the highest bar of
regulatory scrutiny.” In the context of monitoring for online
advertisement, one interviewee said, “if by mistake we ad-
vertise to the wrong user, and by mistake, we bid with the
wrong price, that will affect the end results, the revenues or
the profit.” While there are numerous other domains and use
cases for ML models, the results here are intended to con-
textualize the responses of the interviewees to the desiderata
and the challenges discussed below.



4.3 Human-centric Requirements for Model
Monitoring

The following themes for model monitoring requirements
emerged based on interviewees’ responses to 1Q2, 1Q3, and
1Q4.

Domain-Specific Debugging & Root Cause Analysis: Inter-
viewees discussed the need for a model monitoring sys-
tem to discover slices or sub-populations of data where un-
expected model behavior and outcomes occur. This would
help one gain insight on model errors, when to retrain a
model, and domain-specific nuances. One interviewee men-
tioned, “If it can provide me with some early warnings or
signs where things go wrong and give me ways to resolve
what’s going on.” Further, the system should allow cus-
tomizable levels of abstractions such as feature-level mon-
itoring, prediction-level monitoring, and performance-level
monitoring based on the use case. One interviewee stated,
“the thing that would really help is customizing monitoring
by allowing different overlays of time scale, business met-
rics, model metrics, etc.”.

Risk Management, Model Governance, and Privacy: Inter-
viewees would like model monitoring systems to help them
manage risk and ensure regulatory compliance. Intervie-
wees emphasized the need for a monitoring system to en-
able centralization of model governance in an organization
rather than have dependencies on an individual or a team
that created the model. One of the interviewees cited the
work of (Kurshan, Shen, and Chen|[2020) in discussing the
challenges of model governance and mentioned the need
for frameworks with self-regulatory capabilities. Such a sys-
tem was also discussed to require to reduce human depen-
dency and automate the process of error detection in ML
pipelines. One of the interviewees remarked, “In the past,
people would manually go [look for errors] and document
[the errors] but now we are trying to automate by monitor-
ing.” Interviewees discussed the risk associated with retrain-
ing the model without monitoring. One interviewee said,
“[without monitoring ] model refresh can be too risky. How
do we ensure the new model is working as intended?” In
certain settings, it would also be desirable for the monitor-
ing system to ensure that privacy and confidentiality of vari-
ous assets such as protected user information in training data
and intellectual property associated with the models are pro-
tected. One of the interviewees mentioned, “that’s [privacy]
keeping people from not sending the data to a hosted envi-
ronment; they want to keep it in their own private VPC and
that adds a lot of challenges for monitoring [as a service].”
Human-Centered Design: Interviewees discussed the need
to preserve human autonomy and decision-making. In other
words, the monitoring system should not trigger actions such
as automated retraining, but instead provide actionable in-
sights and suggestions to enable humans to make better
decisions. Further, the monitoring system should provide
relevant and meaningful alerts without cognitive overload.
One interviewee discussed, “For individual data scientists,
1 think the process [of root cause analysis ] becomes cumber-
some or if they are trying to share information, it becomes
untenable when the number of models grows.” In the context

of emotions, one interviewee stated, “you know if somebody
wakes me up at 12 o’clock in the night saying ‘Oh, there is
a drift and take a look,” and if there is no drift, I am going
to be mad.” Another interviewee said, “An ideal monitoring
system should not create alert fatigue.” To avoid this, the
model monitoring system needs to be aware of aspects such
as the types of alerts, how often they are fired, and how they
are presented. The challenge, however, as discussed by one
interviewee is that, “we may not have the right metrics that
measure human [centered] things such as individual prefer-
ences and fatigue.”

4.4 Challenges for Model Monitoring: Temporal
Categorization

We temporally categorized challenges as (1) design chal-
lenges before deploying a monitoring system, (2) challenges
during monitoring an ML system, and (3) challenges post
deployment with respect to the usefulness of monitoring out-
comes.

Interviewees highlighted several practical challenges in
designing and deploying an ML model monitoring system.
These challenges included design questions such as what
should be monitored, and how should the monitoring system
interact with the model. One interviewee discussed, “some-
times you have models that translate from one layer to an-
other. So monitoring a feature XYZ may not make sense to
the customer.” Another interviewee discussed that for moni-
toring systems as a service, “when it comes to actually doing
things, there are a lot of other constraints that become more
important like people [clients] might not talk about [their
use case] or might not explicitly tell you so.” These point
to the requirement of a monitoring system having the abil-
ity to provide some guidelines or in-built options for what to
monitor in an ML system.

Interviewees also discussed whether the monitoring sys-
tem would also need the technical dependencies that a model
requires, such as packages and modules, to ingest a model
and execute successfully. One interviewee discussed, “let’s
say an organization uses a package but there I'm not quite
sure what the business model is, can anybody go and down-
load that and set that up and run that on their end? I'm
not sure.” Thus, monitoring systems are discussed as sys-
tems that have the ability to take an ML system as an input
and provide monitoring insights as an output. In that con-
text, interviewees raise the challenge for an ML monitoring
system to possess a super-set of the technical capabilities of
different ML systems. We note that this perceived challenge
by the interviewees in practice is only a concern if the ML
model is required to run specific predictions on the monitor-
ing platform. We discuss this finding in Section 5}

Some interviewees had prior experience with model mon-
itoring systems, and discussed the challenges of protecting
privacy of users in training data and confidential information
/ intellectual property associated with their models. One in-
terviewee said, “For third party monitoring tools offered as
SaaS [Software-as-a-Service], the clients have to send the
data [to the third party server] — that becomes a privacy
challenge.” All interviewees emphasized the challenges of
adapting a monitoring system to the domain-specific needs



of the ML system and the lack of solutions that cater to their
specific needs. For example, the data volume experienced
by an ML system is highly sensitive to its application con-
text, and could become a key design consideration for an ML
monitoring system to be able to handle. Such decisions are
currently made manually, and there is a lack of a framework
that helps automate the design process for an ML monitor-
ing system. Hence, interviewees highlighted the need for a
fully managed monitoring service for their ML systems.

We also observed that the interviewees discussed chal-
lenges that may occur when an ML monitoring system is
deployed. They discussed the lack of existing reliable solu-
tions in assessing whether an observed drift in data or model
performance is a cause for concern. One interviewee men-
tioned “products have some sort of seasonality or recurring
drift that is probably not very interesting for the developers
to get alerted for. For example, when I was at [organization
name] we would see usage peak on weekends vs. weekdays
because most people would open the app on the weekends.
If [organization name] were to use a [model] monitoring
system, how do we identify drift that is anomalous vs. sim-
ply seasonal [or periodic]?” Such a lack of reliability can
result in cognitive fatigue that may desensitize practitioners
from gaining meaningful insights from the monitoring sys-
tem. Interviewees also discussed latency challenges, that is,
how quickly can a monitoring system detect issues and sug-
gest remedial actions. Here, interviewees discuss the need
for the monitoring system to inform the human user about
the computation time of various aspects of monitoring that
may not necessarily be computed on similar timescale. One
interviewee stated, “I can do an F1 score in real time and
that’s a simple thing to be able to do, given a particular
classification threshold but if I want to do AUC which is
independent of the classification threshold, all of a sudden
that’s a very different computation. So it’s very interesting
that people know the formula, but they expect the same be-
havior for both which is not theoretically possible.” Systems
that are slow to identify issues may not be useful in certain
contexts, such as autonomous driving, where high-stakes de-
cisions often need to be made in real-time by ML models.
Further, due to privacy, intellectual property, and security/-
compliance considerations, interviewees highlighted that the
monitoring tools and systems may need to be present “on-
premise” or in-situ rather than a third party housing such a
system. Consequently, debugging or maintaining the mon-
itoring system itself may be challenging, especially if the
services are being sought from a third party.

Interviewees also discussed the “so what” or value-based
challenges with monitoring systems. These discussions fo-
cused on the value of the insights gained from such systems,
and pertained to aspects such as whether/how the monitoring
insights could enable the stakeholders to take concrete ac-
tions to improve business outcomes and whether non-experts
would be able to understand these insights. As an example,
one interviewee quoted, “developers need to know how the
model affects business metrics, and monitoring is important
for that.”

4.5 Challenges for Model Monitoring:
Feature-specific Categorization

As noted earlier, data drift, outlier detection, data integrity
violation, model performance, and bias/fairness are the key
dimensions of model monitoring highlighted by the intervie-
wees. Next, we discuss the specific desiderata themes within
some of these dimensions.

For data drift, we found that all the interviewees consider
input and output data distribution monitoring as a necessity
for model monitoring. Also, such drift monitoring is treated
as an indicator for model retraining. Further, data integrity
violation and outlier detection are aspects that are discussed
as a part of the data drift monitoring functionality as well.
One interviewee said, “customers want simple stuff like data
drift, performance monitoring, and some sort of anomaly de-
tection. That is the first set of things they want.” Another
interviewee mentioned, “customers are very worried about
data integrity issues such as a breakdown in their pipeline
they want to know immediately. A sudden change in data.”
We note here that the “customers” referred to by the inter-
viewees are stakeholders interacting with these interviewees
in professional settings who have expressed interest in using
model monitoring systems as a service.

For bias/fairness monitoring, customer requirements are
currently driven through policies and regulations. One in-
terviewee stated, “Fairness is rare so far in my experience
but with big banks, regulation and compliance are driving
it.” Another interviewee said, “There is a smaller subset of
cases for bias and fairness monitoring.” Words such as “pol-
icy”,“regulatory constraints”,“fines”, and “regulatory push”
were used to describe the need for fairness monitoring. Prac-
titioners mentioned that compliance and risk management
teams are concerned about bias/fairness also due to its im-
pact on the trust and the reputation of a company. By lever-
aging ML model monitoring, an organization could proac-
tively detect and mitigate any biases observed in its deployed
models instead of having to react when such issues are dis-
covered by external entities.

5 Conclusion and Discussion

Motivated by the need for understanding the human-
centered requirements and challenges in designing moni-
toring frameworks for ML systems, we performed an inter-
view study with ML practitioners with experience spanning
several application domains. We presented findings and in-
sights on real-world use cases, desiderata, and challenges for
ML model monitoring in practice based on these interviews.
Interviewees discussed both feature-specific and process-
specific aspects of model monitoring. Feature-specific as-
pects include monitoring data drift, model performance, and
bias/fairness and ensuring that the alerts are relevant with-
out cognitive overload. Process-specific aspects include the
temporal considerations before, during, and after the deploy-
ment of the model monitoring system and the ability of a
monitoring system to cater to different needs across the life-
cycle of an ML system.

Based on the requirements and challenges reported in this
work, we discuss potential pathways to address concerns on



themes of human-centric design of model monitoring sys-
tems. We believe that human autonomy and agency can be
preserved using a human-Al decision making framework,
wherein the model monitoring system is used in conjunc-
tion with a human decision maker. This implies enabling
the system to report data integrity violations or different
types of drift, and then allowing human users to pursue cor-
rective pathways such as correction of labels or features,
data re-sampling, and model retraining. To avoid cognitive
load, monitoring systems could include threshold knobs and
preference logging features that enable humans to embed
domain-specific knowledge for their specific use cases. For
centralization of model governance, the model monitoring
system could enable automatic report generation and use of
natural language to describe the state of an ML system. This
would enable non-experts to also have an understanding of
the state of an ML system. To address latency concerns,
while there may be technological advancements to improve
computation speed as well as efficient designs of a system,
we also highlight the need for the system to educate the hu-
man user about the time estimates for certain computations
as well as a comparative view of the difference in compute
time for different aspects of a system. Such knowledge can
potentially improve user experience while leveraging model
monitoring systems.

We highlight a perceived challenge regarding the tech-
nical requirements of a model monitoring system. Intervie-
wees described the challenge for an ML monitoring system
to possess a super-set of the technical capabilities of differ-
ent ML systems it monitors. However, we note that to moni-
tor inputs, outputs, and other characteristics associated with
a deployed model, a monitoring system does not need to ex-
ecute the model and can instead take the production logs as-
sociated with the model as input. Thus, the model monitor-
ing system may not need the technical infrastructure to run
the model itself, and can instead focus on the tools and tech-
niques for prediction of distribution shifts. This understand-
ing influences the design decisions for monitoring systems
and we thus highlight that model monitoring systems may
be designed in a model-agnostic manner. This also points to
the caution required in analyzing human-centric desiderata
where perceived challenges by practitioners, who may not
necessarily be experts in ML, may stem from misconcep-
tions about the system functionalities.

We also note that inferring a user’s cognition is currently
an active area of research (Akula et al.|2022; |Shergadwala,
Panchal, and Bilionis|[2022; (Wu et al.|[2022). While some
human-centric requirements may point to the user’s desire
to be “understood” by a system in real-time, it is currently
not practically feasible to so. Further, several studies have
highlighted the limits of human oversight and the challenges
that arise when attempting to build tools that enable people
to monitor technological systems (e.g., see [Perrow| (1999)
and |Green| (2022))). Thus, we need to be aware of the limits
in the ability to build model monitoring tools and interfaces
that actually satisfy the human-centric requirements stated
by the interviewees.

We acknowledge that our analysis is limited based on the
inputs of only thirteen practitioners. However, the intervie-

wees are ML practitioners with deep knowledge of ML sys-
tems in their respective domains and extensive experience of
ML model monitoring systems. Hence, we were able to ob-
tain and analyze human-centric requirements and challenges
from a practical viewpoint based on our interviews. More
broadly, we encourage MLOps practices to formalize design
frameworks for ML monitoring systems that are cautiously
informed by human-centered desiderata.
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