

Bioprinting of Hybrid Tissue Engineering Constructs

May 15, 2018

Scott Elrod, Associate Director Stanford Office of Technology Licensing scott.elrod@stanford.edu, (650) 725-9409

Living Tissue Printing is Currently Limited

Lack of a multifunctional platform for printing combinational constructs with both rigid structure for mechanical support and soft materials that can be cell-laden

Invention from the Lab of Prof. Peter Yunzhi Yang

"Hybprinter"

Multi-materials platform that includes:

- FDM of rigid plastics & ceramic composites
- SLA of fine hydrogel structures
- Syringe deposition of cell types

Details

- **FDM** (**molten extrusion**) of poly-(\(\epsilon\)-caprolactone) and its ceramic composite
- DLP-SLA (Digital Light Projector-Stereolithography) of poly-ethylene glycol diacrylate hydrogel of human umbilical vein endothelial cells that express GFP, with photo-initiator
- Syringe deposition of human mesenchymal stem cells
- Even with 90% hydrogel and 10% plastic, the modulus is 6 MPa (versus 0.1 MPa for the hydrogel alone)

The Hydrogel

- Photo-sensitive and can be patterned on a fine scale
- Can contain cells and growth factors
- Structures can have graded properties, simply by altering the light exposure
- This can control the release profiles of growth factors as a function of location

3D Printing of Porous Rigid Structures

- √ Fine micro-architecture
- ✓ Controlled porosity , pore size and shape
- √ Functionally-graded internal architecture

STANFORD UNIVERSITY

3D Printing of Cell-laden Soft Hydrogels

Functionally-graded physical and mechanical properties in X,Y,Z directions:

- ✓ Control of mechanical properties
- ✓ Control of swelling ratio
- √ High cell viability
- √ High diffusibility

3D Printing of Hybrid Rigid-Soft Constructs

- ✓ Porous scaffold infilled with hydrogel
- ✓ Bulk hydrogel reinforced with rigid structure
- ✓ Biphasic construct
- ✓ Porous scaffold with spatially distributed hydrogel components for local cell and drug delivery
- ✓ Scaffold with a hydrogel conduit passing throughout
- ✓ Combination of thermoset and thermoplastic polymers to benefit from the high elastic modulus/stiffness of the former and the high break/yield elongation of the latter

Connectable macro-conduit built in porous tissue engineering constructs and perfusion of nutrients

Intellectual Property

DocketNumber	Title	
	Hybprinter - A novel method and system for	
	bioprinting of hybrid tissue engineering constructs	
S14-335	and 3D printing of multi-material objects	pending US
	Hybrid Suture Anchor-Tendon Graft to Repair Bone-	
S15-218	Tendon Interfaces	pending US
	Implant for improved treatment of early stage	
S15-027	osteonecrosis of the hip	pending US
	Crosslinked chitosan-lactide matrices for the	granted US: 9,814,779
S13-081	controlled delivery of therapeutic agents	pending EPO, JP, HongKong
	New graft geometry for large segmental bone defect	
S17-165	repair	pending US provisional

http://techfinder.stanford.edu

scott.elrod@stanford.edu

STANFORD UNIVERSITY

We would like to acknowledge the financial support of the following agencies: NIH R01AR057837 (NIAMS), NIH R01DE021468 (NIDCR), DOD W911NF-14-1-0545 (DURIP), DOD W81XWH-10-1-0966 (PRORP), and Stanford Coulter Translational Seed Grant.