Wearable Optical Brain Imaging (WOBI)

Optics of Blushing Brains

Neurons fire \rightarrow Stimulates local blood flow \rightarrow Brain blushes

Red = blood oxygenation increasing Blue = blood oxygenation decreasing

Towards an fMRI surrogate free of the scanner

fMRI

Motivations for Optical Neuroimaging

Can we detect ischemia?

Can we inform therapy of visual function disorders?

Can we predict outcome of cooling therapy?

Can we quantify cognitive function?

Can we monitor the effects of deep brain stimulation in Parkinson's?

Embedded electrodes

R

High-Density Diffuse Optical Tomography \rightarrow for optimizing lateral resolution with some depth profiling

Resolution ~ 15 mm (White, et al. NeuroImage 2010) Accuracy ~ 5 mm (Eggebrecht, et al. NeuroImage 2012)

Mapping Language Processing

Culver NIAC 2014 February

7

Culver NIAC 2014 February

Can we quantify cognitive function in acute stroke?

PhD

MD, PhD

Value Proposition: Detect & Characterize Stroke

Not quite wearable or portable any more....

Replace the fibers with smart optodes

\HhO

e: 00:01

New smart optode modules

Photodiode Detector

32 source 32 detector Wifi, battery system

Performance with our first wearable prototype

Detectivity, DNR, Cross talk

WHD-DOT Specifications	
NEP	94 fW/√Hz
Detectivity	12.3 fW/√(Hz)/mm²
Dynamic Range	134 dB
Crosstalk	-108 dB
Frame Rate	10 Hz

Retinotopy

Summary

New wearable prototype pass both benchtop and initial in vivo performance milestones.

Customer Segments

- Research
 - Cognitive Neuroscience
 - Child development and Developmental Disorders
 - Mental Health
 - Addiction
 - Stroke: acute and recovery
 - Traumatic Brain Injury
 - Aging, Alzheimer's
 - Parkinson's
 - Anesthesiology

- Clinical
 - Spaces:
 - Critical Care
 - Emergence Care
 - Intensive Care units
 - Operating Room
 - Injuries
 - Stroke
 - Traumatic Brain Injury
 - Subarachnoid hemorrhage

Market Size

- Clinical only:
 - Cerebral Oximetery (non-imaging) Market Capitalization was \$130 million. (2018)
- research only: fNIRS -
 - "The global fNIRS Brain Imaging System market size is expected to gain market growth in the forecast period of 2020 to 2025, with a CAGR of 10.0% in the forecast period of 2020 to 2025 and will be expected to reach 201.2 million by 2025, from 137.2 million in 2019."

Consumer Market? Facebook is interested.

Potential Team

Joseph P. Culver, PhD Sherwood Moore Professor of Radiology

Ed Richter, MS. Professor of Practice, Electrical Systems Engineering

Adam Eggebrecht, PhD Assistant Professor Radiology

Jason Trobaugh, PhD, Professor of Practice, Electrical Systems Engineering