PREOMICS

iST-BCT Sample Preparation Kit 8x

Purified proteins & biological fluids

Introduction

Sample preparation is one of the essential steps of bottom-up proteomics. The PreOmics iST sample preparation kit is designed to assist researchers achieving best results with few sample preparation steps and little hands-on time. For sample-specific protocols and optimization visit www.preomics.com/downloads or contact info@preomics.com.

Kit Contents

The kit contains everything to perform a complete sample preparation. It includes all chemicals to denature, reduce and alkylate proteins, as well as the enzymes to perform a tryptic digestion and a final peptide cleanup.

Component	Сар	Quantity	Buffer Properties		:S	Description	Storage	
			Organic	Acidic	Basic	Volatile		
DIGEST		2x					Trypsin/LysC mix to digest proteins.	-20°C
RESUSPEND-BCT		1x 2 mL				•	Reconstitutes lyophilized proteolytic enzymes.	RT
LYSE-BCT		1x 1 mL			•		Denatures, reduces and alkylates proteins.	RT
STOP		1x 1 mL	•	•		•	Stops the enzymatic activity.	RT
WASH 1		1x 2 mL	•	•		•	Cleans peptides from hydrophobic contaminants.	RT
WASH 2		1x 2 mL		•		•	Cleans peptides from hydrophilic contaminants.	RT
ELUTE		1x 2 mL	•		•	•	Elutes the peptides from the cartridge.	RT
LC-LOAD	\circ	1x 1 mL		•		•	Loads peptides on reversed-phase LC-MS column.	RT
CARTRIDGE		8x					Cartridge for 1 to 100 μg protein starting material.	RT
WASTE		8x					2.0 mL tube for collecting waste after washing steps	. RT
COLLECTION		8x					1.5 mL tube for collecting peptides after elution.	RT
ADAPTER		8x					Enables a cartridge to be placed into a tube.	RT

Pre-Requisites

Common lab equipment is required for the sample preparation.

Equipment	Quantity and Description
PIPETTE	Careful sample handling and pipetting reduces contaminations and improves quantification.
SAMPLE	Biological fluids & therapeutic proteins. For other sample types contact PreOmics for adapted protocols.
HEATING BLOCK	Two heating blocks are recommended to support protein denaturation and digestion.
CENTRIFUGE	1.5/2.0 mL reaction tube centrifuges are required for loading, washing and elution.
SONICATOR	If the sample contains DNA, shear it by sonication (e.g. Diagenode Bioruptor®).
VACUUM EVAPORATOR	Vacuum manifolds evaporate volatile buffers from the eluate before LC-MS.
ULTRASONIC BATH	Optional: can be used to resuspend peptides.

Procedure

1. LYSE	2. DIGEST LysC & Trypsin		3. PURIFY Wash & Elute	 60 min
---------	-----------------------------	--	---------------------------	------------------------------------

Quantity: 1-100 µg protein starting material Version 4.0 - For research use only www.preomics.com 1 of 2

Method

1 LYSE

- 1.1. Add 50 μL LYSE-BCT to 1-100 μg of protein sample, place it in a HEATING BLOCK (95°C; 1,000 rpm; 10 min). Precipitation may occur. *NOTE1*
- 1.2. Optional: Spin down droplets (RT; max. 300 rcf; 10 sec).
- 1.3. If the sample contains DNA, shear it in a SONICATOR (10 cycles; 30 sec ON/OFF).
- 1.4. Use ADAPTER to place CARTRIDGE in WASTE tube. Label all tubes.
- 1.5. Transfer sample to CARTRIDGE and cool down (RT). Be careful not to damage the bottom layer of CARTRIDGE.

2. DIGEST

- 2.1. Add 210 μL **RESUSPEND-BCT** to **DIGEST** (1 tube for 4 reactions), shake (RT; 500 rpm; 10 min), pipette up/down.
- 2.2. Add 50 μL DIGEST to CARTRIDGE and place it in a pre-heated HEATING BLOCK (37°C; 500 rpm; 1 hour).
- 2.3. Add 100 μL STOP to CARTRIDGE (precipitation may occur), shake (RT; 500 rpm; 1 min / pipette up/down). *SP*

PURIFY

- 3.1. Spin CARTRIDGE in a CENTRIFUGE (3,800 rcf; 1 min). If needed, adjust time to ensure complete flow-through.
- 3.2. Add 200 µL WASH 1 to CARTRIDGE, repeat step 3.1.
- 3.3. Add 200 μL WASH 2 to CARTRIDGE, repeat step 3.1. *SP*
- 3.4. Use ADAPTER to place CARTRIDGE in a fresh COLLECTION tube. Label all tubes.
- 3.5. Add 100 µL ELUTE to CARTRIDGE, repeat step 3.1., keep flow-through in COLLECTION tube.
- 3.6. Repeat step 3.5., keep flow-through in the same **COLLECTION** tube.
- 3.7. Discard CARTRIDGE and place COLLECTION tube in a vacuum evaporator (RT; until completely dry but not overnight).
- 3.8. Add LC-LOAD to COLLECTION tube. Aim for 1 g/L concentration (e.g. 100 μL to 100 μg protein starting material).
- 3.9. Sonicate COLLECTION tube in an ULTRASONIC BATH (5 min) or shake (RT; 500 rpm; 5 min). *SP*

NOTE1 Volumes of buffers can be adjusted according to protein starting amounts.

For even lower oxidation & deamidation rates and increased alkylation rate: reduce heating block temperature to 80°C and incubate samples 10-20 min.

Visit our FAQ website for more information: www.preomics.com/faq.

For optimal digestion efficency, do not store **DIGEST** resuspended in **RESUSPEND-BCT**, but use within one day. *NOTE2*

At this point, close the peptide containing tube or CARTRIDGE using silicon lid. *SP* - Storage Point:

Peptides can be frozen at -20°C. Storage of peptides should not exceed two weeks at -20°C.

For extended storage, finish the protocol and store at -80°C.

Data analysis

Consider the following as fixed modifications in your database search:

MODIFICATION	DESCRIPTION	COMPOSITION	SPECIFICITY	MASS	UNIMOD#
ALKYKATION	Carbamidomethyl on cysteine	C ₂ H ₃ NO	[C]	+57Da	4

Please refer to www.preomics.com for our General Terms and Conditions.

Quantity: 1-100 µg protein starting material

Material: Purified proteins & biological fluids

Version 4.0 - For research use only