PREOMICS

iST Sample Preparation Kit 8x

Plant Tissue

Introduction

Sample preparation is one of the essential steps of bottom-up proteomics. The PreOmics iST sample preparation kit is designed to assist researchers achieving best results with few sample preparation steps and little hands-on time. For sample-specific protocols and optimization visit www.preomics.com/downloads or contact info@preomics.com.

Kit Contents

The kit contains everything to perform a complete sample preparation. It includes all chemicals to denature, reduce and alkylate proteins, as well as the enzymes to perform a tryptic digestion and a final peptide cleanup.

Component	Сар	Quantity	Buffer Properties		es	Description	Storage	
			Organic	Acidic	Basic	Volatile		
DIGEST		2x					Trypsin/LysC mix to digest proteins.	-20°C
RESUSPEND	\bigcirc	1x 2 mL				•	Reconstitutes lyophilized proteolytic enzymes.	RT
LYSE		1x 1 mL			•		Denatures, reduces and alkylates proteins.	RT
STOP		1x 1 mL	•	•		•	Stops the enzymatic activity.	RT
WASH 0	\bigcirc	1x 2 mL	•	•		•	Cleans peptides from phytochemicals.	RT
WASH 1		1x 2 mL	•	•		•	Cleans peptides from hydrophobic contaminants.	RT
WASH 2		1x 2 mL		•		•	Cleans peptides from hydrophilic contaminants.	RT
ELUTE		1x 2 mL	•		•	•	Elutes the peptides from the cartridge.	RT
LC-LOAD	0	1x 1 mL		•		•	Loads peptides on reversed-phase LC-MS column.	RT
CARTRIDGE		8x					Cartridge for 1 to 100 µg protein starting material.	RT
WASTE		8x					2.0 mL tube for collecting waste after washing steps	. RT
COLLECTION		8x					1.5 mL tube for collecting peptides after elution.	RT
ADAPTER		8x					Enables a cartridge to be placed into a tube.	RT

Pre-Requisites

Common lab equipment is required for the sample preparation.

Equipment	Quantity and Description
PIPETTE	Careful sample handling and pipetting reduces contaminations and improves quantification.
SAMPLE	Cryomilled plant material (or other means of cryogenic grinding with liquid nitrogen).
HEATING BLOCK	Two heating blocks are recommended to support protein denaturation and digestion.
CENTRIFUGE	1.5/2.0 mL reaction tube centrifuges are required for loading, washing and elution.
SONICATOR	If the sample contains DNA, shear it by sonication (e.g. Diagenode Bioruptor®).
VACUUM EVAPORATOR	Vacuum manifolds evaporate volatile buffers from the eluate before LC-MS.
ULTRASONIC BATH	Optional: can be used to resuspend peptides.

Procedure

1. LYSE	2. DIGEST		3. PURIFY	
Reduce & Alkylate 👃 95°C	LysC & Trypsin	 37°C	Wash & Elute	RT

Quantity: 1-100 µg protein starting material Version 4.2 - For research use only

1 of 2

Method

1. LYSE

- 1.1. Transfer 1-100 µg protein from cryomilled plant material into a clean 1.5 mL microreaction LoBind tube.
- 1.2. Add 100 µL LYSE . Place sample in a HEATING BLOCK (95°C; 1,000 rpm; 10 min). *NOTE1*
- 1.3. Shear the sample in a SONICATOR (10 cycles; 30 sec ON/OFF).
- 1.4. Optional: Spin down droplets (RT; max. 300 rcf; 10 sec).

2. DIGEST

- 2.1. Add 210 µL RESUSPEND to DIGEST (1 tube for 4 reactions), shake (RT; 500 rpm; 10 min), pipette up/down.
- 2.2. Add 50 μL DIGEST to tube and place it in a pre-heated HEATING BLOCK (37°C; 500 rpm; 3 hours).
- 2.3. Add 100 µL STOP to tube (precipitation may occur), shake (RT; 500 rpm; 1 min/pipette up/down). *SP*
- 2.4. Spin sample in CENTRIFUGE (16,000 rcf; 1 min).

3. PURIFY

- 3.1. Use ADAPTER to place CARTRIDGE in WASTE tube. Label all tubes.
- 3.2. Transfer supernatant from 2.4. to CARTRIDGE. Be careful not to damage the bottom layer of CARTRIDGE.
- 3.3. Spin CARTRIDGE in a CENTRIFUGE (3,800 rcf; 1-3 min). If needed, adjust time to ensure complete flow-through.
- 3.4. Add 200 μL WASH 0 to CARTRIDGE, repeat step 3.3.
- 3.5. Add 200 μL WASH 1 to CARTRIDGE, repeat step 3.3.
- 3.6. Add 200 μL WASH 2 to CARTRIDGE, repeat step 3.3. *SP*
- 3.7. Use ADAPTER to place CARTRIDGE in a fresh COLLECTION tube. Label all tubes.
- 3.8. Add 100 µL ELUTE to CARTRIDGE, repeat step 3.7., keep flow-through in COLLECTION tube.
- 3.9. Repeat step 3.8., keep flow-through in the same **COLLECTION** tube.
- 3.10. Discard CARTRIDGE and place COLLECTION tube in a vacuum evaporator (45°C; until completely dry).
- 3.11. Add LC-LOAD to COLLECTION tube. Aim for 1 g/L concentration (e.g. 100 μL to 100 μg protein starting material).
- 3.12. Sonicate COLLECTION tube in an ULTRASONIC BATH (5 min) or shake (RT; 500 rpm; 5 min). *SP*

NOTE1 Volumes of buffers can be adjusted according to protein starting amounts.

Lysis temperature should be between 60-95°C.

Visit our FAQ website for more information: www.preomics.com/faq.

At this point, close the peptide containing tube or CARTRIDGE using silicon lid. *SP* - Storage Point:

Peptides can be frozen at -20°C. Storage of peptides should not exceed two weeks at -20°C.

For extended storage, finish the protocol and store at -80°C.

Data analysis

Consider the following as fixed modifications in your database search:

MODIFICATION	DESCRIPTION	COMPOSITION	SPECIFICITY	MASS	UNIMOD#
ALKYKATION	Carbamidomethyl on cysteine	C ₂ H ₃ NO	[C]	+57Da	4

Please refer to www.preomics.com for our General Terms and Conditions.

Quantity: 1-100 µg protein starting material 2 of 2 www.preomics.com