
Budgeting for
Software:

a 7-Step Guide
There are two types of software budgets. You can either gamble or you
can sprint. The goal of this guide is to advocate for pace and
predictability, over guesswork and hope, so businesses can
continuously plan for more digitalization. Sprints are a one or two week
cycle of work that are designed to prioritize, focus, deploy some working
features, and repeat.

Knowing that gambling isn’t really good enough for business planning, I
am going to outline some of the most important things that experts have
learned over the last two decades of trying to be on time and under
budget.

Before you get started
building, decision-makers will
want to know how much your
project is going to cost, and
when it can be completed. I
recommend you bring in 2 or
3 senior developers and
describe to them three
things:

1. The ultimate result you
want from the software (i.e. “I want to make $50/year from existing

customers buying more through these added features”) 

2. The feeling you hope the User Interface communicates to your
users (i.e. “I want it to be helpful and communicative like Turbo
Tax”) 

3. The database constraints this project will need to integrate with or
rely on (i.e. “We need to use our Hubspot marketing data to
populate the customer’s birthday”) 

Have each developer think about it for one day and then reconvene with
a “Confidence Percentage” like a weather forecast. It would be
something like this:

Like the weather, you should expect wild ranges of possibilities here,
after all, you are going to build something that hasn’t been built before -
and your developers are going to have to adapt to the changing
requests of the business stakeholders too. There will be bugs, there will
be mistakes, and there will be ambiguous challenges to problem-solve.
Your developers are critical thinkers and they are investigators.
Software developers are not estimating how long it takes to make a ten-
thousand-brick wall. There are going to be many unknowns.

CONFIDENCE
PERCENTAGE 40% 70% 90%

COMPLETION
DATE 2 months 6 months 12 months

IMPLIED
LABOR COST $40,000 $120,000 $240,000

Next, its time to get started with some intentionality. Use these next 7
things to frame your thinking and leadership.

3 Common Pitfalls
1. Avoid predicting the future. Casting vision is great, but you need

to walk the balance between knowing that a software project will
be worthwhile to tackle, but not trying to predict every feature it will
have the date you need to go live, and the budget you need to
stay under. This proves very hard, as most decision makers get
excited about the raw potential of their new concept coming to life
in software. 

2. Avoid overconstraining your team by picking the order of

priority between Budget, Completion Date, and Scope. If you ask
for all three to be equally important, you’re in for a rocky ride. In
our company we prefer to think in terms of Completion Date, then
budget, then scope. We know the easiest thing to change is our
idea (Scope), and by publishing a smaller scope faster, we can get
user validation (and some income!) before engineering more
features.  

3. Avoid the “one-time-build” mentality. Many people who haven’t
lead software projects before think they can get an estimate and
then deliver their vision within a set budget request from the
money people, and a reasonable timeframe. But its more like
buying a ranch property. Yeah, you may get a sweet house on
some acreage with tons of features - but with you’ll find you are no
different than all those other homesteaders: the weeds will need
plucking, the fence will need new boards, and your utility bills will

never go away. Make sure you understand your software will need
fresh paint every few years, the termites (bugs) will need a plan of
attack, and you’ll always need to update the kitchens and
bathrooms to keep with the times. There is no such thing as one
and done in software or home-ownership. 20% is a good number
to set aside for annual maintenance, and then you can hope that
it’s lower than that.  

4 things to budget for
4. Build Strong Story Writing Expectations (5% of labor?) - Set

aside 8-10 hours a week of your Product Owner’s time to write out
some scope in greater detail than they usually want to. They need
to stay WAY ahead of the development team. These hours are just
for thinking and writing, not even for meetings around the project.
It’s hard to do this part right if you’ve never done it before. The
larger the spend on developers, the larger you need the time
investment of the Product Owner (and project manager for that
matter) to be. If they are new to the Product Owner game, make
sure they brush up on how to write a user story that devs can
actually use. It’s too easy for the Product Owner (or often the
“subject matter expert”) to rely heavily on meetings for
communicate how they want a feature to work and act.
Developers don’t thrive in a meetings culture - they need all the
edge cases of a feature explained in writing, or they will certainly
forget things when they’re knee deep in code and have been
critical thinking for 6 hours straight. If you don’t write clearly and
thoroughly, you’ll rack up an incredible amount of what we refer to
as technical debt. Don’t forget the “Acceptance Criteria” details

https://blog.easyagile.com/how-to-write-good-user-stories-in-agile-software-development-d4b25356b604
https://blog.easyagile.com/how-to-write-good-user-stories-in-agile-software-development-d4b25356b604
https://dzone.com/articles/technical-debt-amp-scrum-who-is-responsible

and don’t be lazy.  

5. Real Design Pros (5% of labor?) Front End Developers are not
designers, but they often are used in this way, and apps become
more cumbersome, look worse, feel worse to your users, and cost
more to develop because of the common trappings of ambiguity.
If you had an engineer draft your new house drawings, you are
going to get something that functions, but will not necessarily flow.
My wife would kill me if I let the engineers choose how the kitchen
and living room to tie in together. Design by real software
designers will make decision-makers feel better about features, so
they will approve them faster. Designers will make developers feel
clarity when designs are combined with the Product Owner’s
story-documentation, so they will develop faster. Product Owners
will write scope faster because they can see what they need to
document. Everyone will go faster, you will spend less money
because of it, trust me, we’ve done this a few times.  

6. Automated Tests & Documentation (10% of labor?)
Documentation is skipped on 50-60% of projects because the
projects are simply underfunded. If you do that, you will regret it in
a year or two, guaranteed. Maintenance costs will go up when
your current developers will turn over (the average developer
stays around for 2 years in the USA). New developers will struggle
to understand the reasoning behind the original code pattern
choices, or what precedents are set. They need documentation to
tell them why and how. “What” isn’t good enough. Your code will
become like a tangled ball of yarn. My customers have spent
millions of dollars on software development labor to redevelop
successful applications because they are no longer sustainable to
keep up with. The other side of the same coin - is writing

automated tests. This is a practice that top-notch developers
would never skip. They know its too important. Automated tests
are written right after a feature is developed, and protect you from
pesky bugs that you spend countless hours of labor to
troubleshoot. Read more about automated tests and why you
need to spend money on them. Please trust me. If your
developers don’t write automated tests naturally, they likely are a
junior developer or have grown up through the ranks of
dysfunctional teams.  

7. Stakeholder Weekly Meetings (3 hours a week) - Don’t skimp
on the meetings that will manage a project into a success. The
miscommunications and “oh shit” moments that come from getting
out of touch with the momentum of your project can really cost
you. There are a thousand small decisions to make, and they
need to be made on time - which is ahead of time. I
recommend two weekly 90 minute meetings for all involved (lead
by your Product Owner). Review your backlog, and get continuous
estimates. Don’t micromanage, and don’t shame during these
meetings - the project is going to take as long as its going to take.
Instead, support and cheer for momentum.

Building Software for the Lowest Cost
Possible is all about Momentum.
In closing, a word on software-team momentum. At Miramar, we use
point-estimates (opposed to hour-estimates) to free our developers from
the stress of time. Points are added for complexity, ambiguity,
precedent, and more (we like to use Fibonacci numbers). Once we
estimate and build, estimate and build, and repeat for a month or so, we

https://smartbear.com/solutions/automated-testing/
https://en.wikipedia.org/wiki/Fibonacci_scale_(agile)

start to develop a history of how many points we can get done on that
project, with this team, in a given week. We start to look for ways to get
a few more points here and there. We start to see how many bugs will
naturally arise on this software - and we start to be able to predict how
much we can get done.

By doing this type of estimating, we can have confidence that we trend
upward on our production, over time. The first couple of months of a big
project are always the slowest. Backend architecture goes into place,
code design patterns are chosen, tech stack becomes more familiar,
and trust between the team members is gained.

The lowest cost of software is always after the initial months, assuming
leaders are supporting and not overburdening the team. If leadership
instead rushes urgent delivery dates or interrupts the developer’s flow
with every imperfect bug - there will never be real momentum gained,
and the project will simply be more expensive than it could be.

Be a good leader, and ask your team how they can get more
momentum, and what you can do to support that.

TLDR:

• Take the developer’s estimates and use “confidence percentages”.
• Add 30% to their estimates for design, QA, documentation,

automated tests, and product stakeholder meetings.
• Make sure you are building the right thing, bring in a consultant

to validate your plan if needed.
• Gain momentum through present and supportive leadership.
• Plan on 20% recurring annual maintenance for a successful

product. You will, after all, want to repaint your house.

https://mindboxstudios.com/

• Don’t spend your whole budget - save money for digital marketing
and user training too! 

Still Reading? Miramar can help you!

If you just need more hands-on-deck look at our On-Demand Service to
contract a needed expert. You can trust the staff we offer, they are
battle-tested and were selected for top communication skills.

If you need someone to just handle it all for you, our studio team is set
up to provide every single software expertise needed to deliver
production-quality software to our clients. We build them and we can
maintain them - or we can take over the project or website that got too
big for your last freelancer.

Miramar works with fortune 100 companies or innovative SMB leaders.
We are trusted by our clients, and we do this stuff with excellence.

http://www.miramar.tech/

