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Abstract	

Soccer	has	some	of	the	most	complex	team	movement	patterns	of	any	team	sport.	Recently,	several	
measurements	have	been	proposed	for	evaluating	state	of	play	and	for	identifying	the	expected	value	
of	dribbles,	passes	or	shots	[1-6].	The	next	step	is	to	automatically	identify	the	alternative	actions	
available	to	players	both	on	and	off	the	ball.	We	address	this	challenge	by	defining	three	optimization	
criteria	that	drives	the	movement	of	players	during	attack.	(1)	Pass	probability:	A	player	moves	to	
maximize	the	probability	of	pass	success	to	either	himself	or	to	another	player,	e.	g.	by	opening	up	a	
passing	lane.	(2)	Pitch	Impact:	Occupy	point	on	the	field	which	is	maximally	dangerous.	For	example,	
a	striker	moves	to	a	point	directly	in	front	of	goal.	(3)	Pitch	Control:		Maximize	the	amount	of	space	
controlled	 by	 the	 team.	 Soccer	 players	 often	 rate	 their	 teammates	 in	 terms	 of	 their	 ability	 to	
anticipate	the	movement	of	the	other	players	on	the	pitch	a	few	seconds	in	to	the	future.	To	account	
for	this,	and	building	on	studies	of	pedestrian	movement,	we	assume	players	maximize	their	future	
value	position	on	a	weighted	combination	of	these	three	criteria.	
	
We	then	built	a	‘self-propelled	player’	model,	simulating	attacking	roles	by	maximizing	a	weighted	
combination	 of	 pass	 probability,	 impact	 and	 control.	 	 We	 compared	 the	 simulations	 to	 player	
decisions	 during	 matches	 by	 top-flight	 men’s	 teams	 of	 Hammarby	 IF	 and	 FC	 Barcelona.	 In	
simulations,	we	found	that	the	two	or	three	players	nearest	to	the	ball	tended	to	optimize	the	product	
of	pass	probability	and	pitch	 impact.	We	found	that	simulations	 in	which	players	optimized	pitch	
control	did	not	reliably	capture	the	movement	of	players.	
	
In	a	first-team	coaching	intervention	at	Hammarby,	players	re-watched	attacking	situations	in	which	
they	had	been	involved	in	the	form	of	pass	probabilities,	pitch	control	visualisations	and	comparisons	
to	the	simulation	model.	The	players	often	agreed	that	the	model	captured	complex	game	patterns,	
including	 attacking	 runs	 to	 displace	 defenders	 and	 pressing	 that	 narrows	 down	 the	 opponent’s	
passing	opportunities.	The	model	also	recommended	runs	that	the	players	hadn’t	taken,	which	the	
players	also	found	realistic	and	aided	discussions.	Despite	the	fact	that	discussion	of	models	with	
professional	players	is	rare,	the	players	showed	a	high	willingness	to	engage	with	them.	We	further	
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explored	how	these	 techniques	can	be	used	 to	provide	automated	 feedback	 to	players	within	 the	
match	cycle.	
	
1. Introduction	
	
The	 fundamental	 challenge	 in	 soccer	 analytics	 lies	 in	 understanding	 the	 collective	motion	 of	 the	
players	and	 the	ball.	 Soccer	 is	 a	more	 fluid	 sport	 in	 comparison	 to	games	 like	American	 football,	
baseball	 and	 cricket,	which	 involve	 discrete	 ‘plays’.	 And,	with	 twenty-two	players	 involved	 at	 all	
times,	it	has	more	moving	parts	than	basketball	or	ice	hockey.	From	a	mathematical	modelling	point	
of	 view,	 this	means	 that	 soccer	 has	more	 degrees	 of	 freedom	 than	 these	 other	 sports,	making	 it	
difficult	to	assess	the	game	using	one	or	a	small	number	of	metrics.		

This	challenge	has,	until	recently,	been	made	even	more	difficult	by	the	lack	of	in-game	data.		Event	
data,	recording	the	co-ordinates	of	the	player	with	the	ball	and	their	actions	(pass,	interception	etc.)	
has	been	available	for	almost	a	decade	from	companies	like	Opta	and	has	recently	been	supplemented	
with	 a	 description	of	 how	much	defensive	pressure	 the	player	with	 the	ball	 is	 under	 from	other	
players,	 from	Statsbomb.	Open	data	sets	 from	these	companies	are	now	available	[8,9].	The	best-
known	statistic	derived	from	event	data	is	expected	goals,	which	measures	the	quality	of	chances	
players	 create	 [1,7].	 Other	more	 advanced	metrics	 include	 expected	 assists,	 passing	models	 that	
assign	a	value	to	every	pass	based	on	how	much	it	progresses	the	ball	 [2],	and	possession	chains	
which	measure	involvement	in	attacking	sequences	[3].	However,	due	to	the	limited	nature	of	event	
data,	these	metrics	really	just	measure	a	small	portion	of	what	occurs	during	a	soccer	game.	To	make	
this	concrete,	consider	the	fact	that,	during	a	typical	match,	Barcelona	striker	Luis	Suarez	has	the	ball	
for	 less	 than	90	seconds	of	 the	90	plus	minutes	of	match	time.	What	Suarez,	or	any	other	player,	
contributes	to	the	play---pressing,	runs	to	open	up	space	and	tactical	positioning---can’t	simply	be	
measured	by	event	data	alone.	
	
More	recent	work	has	focused	on	spatial-temporal	tracking	data	of	the	co-ordinates	on	the	pitch	of	
all	 the	 players,	 as	 well	 as	 the	 position	 of	 the	 ball	 [4-6,10].	 Even	more	 advanced	 techniques	 are	
attempting	to	reconstruct	body	orientation	from	match	video	[11].	Most	professional	leagues	now	
collect	this	tracking	data	for	all	matches	and	while	this	data	still	contains	errors	(player	ids	switched,	
players	obscured	and	not	properly	tracked	at	certain	time	points),	 it	 is	sufficiently	accurate	to	be	
used	to	start	to	develop	models.		

Tracking	data	allows	for	the	incorporation	of	much	more	information	than	event	data,	such	as,	the	
interceptability	 of	 any	 potential	 pass,	 the	 relative	 location	 of	 players	 according	 to	 the	 defending	
block,	the	degree	of	space	control	at	any	location,	and	players’	velocity.	One	way	to	approach	tracking	
data	is	to	extend	the	metrics	based	on	estimating	pass	values	in	event	data.	For	example,	Spearman	
developed	 a	 comprehensive	 game	 state	 representation	 using	 tracking	 data.	 His	model	 combines	
probability	of	scoring	from	a	point	on	a	pitch,	the	probability	the	team	controls	that	point	and	the	
probability	the	ball	transitions	to	that	point,	providing	an	objective	way	of	estimating	the	expected	
long-term	value	of	soccer	possessions	[10].	Parameters	for	the	model	were	then	fitted	from	match	
data.	Tracking	data	can	also	be	used	to	learn	directly	from	raw-level	tracking	data	using	deep	neural	
networks.	This	data-driven	approach	has	been	adopted	in	both	basketball	[12,13]	and	soccer	[14].		
These	models	can	produce	realistic	looking	player	trajectories	and	be	used	to	automatically	identify	
different	types	of	formations	and	forms	of	attack	(e.g.	counterattacks)	[15].	
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A	data-driven	 approach	 using	machine	 learning	 certainly	 has	 its	 advantages.	However,	 there	 are	
other	successful	approaches	to	the	study	of	collective	motion	which	might	prove	more	appropriate	
in	 soccer,	 in	 particular.	 In	 the	 study	 of	 collective	 motion	 of	 animal	 groups,	 one	 very	 successful	
modelling	approach	is	commonly	known	as	self-propelled	particles.	These	model	individuals	(fish,	
birds	or	humans)	in	terms	of	a	small	number	of	principles	that	determine	how	they	interact	with	
neighboring	 individuals.	 The	 earliest	 models	 of	 this	 sort	 described	 fish	 as	 responding	 to	 their	
neighbors	 in	 three	 zones	 [16,17].	 A	 small	 repulsion	 zone	 where	 they	 avoid	 collisions,	 a	 larger	
alignment	 zone	where	 they	move	 in	 the	 same	 direction	 of	 neighbors	 in	 that	 zone	 and	 an	 outer	
attraction	zone	 in	which	 they	move	 toward	their	neighbors.	Simulating	 these	rules	demonstrated	
how	simple	interaction	rules	showed	how	even	very	simple	can	produce	complex	patterns	[18,19].		

	

	

	

(a) 

(b) 
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Figure 1: (a) A specific match situation in which a winger runs towards the box in order to open up space for the left back. (b) 
Illustration of the three zones in football for both teams. Barcelona (red) are in possession of the ball and attacking to the right. The 
Real Betis (green) are defending. The player with the ball and the two defenders nearest to the ball are in the Intervention zone. 
The players in the direction of the pass (blue line) as well as the nearest defenders are in the mutual help zone.  Other players are 
considered to be in the co-operation zone. (c) Passing probabilities calculated for this situation.  Green is high pass success, red is 
low success probability. See	Appendix	A.1	for	details	of	how	pass	probability	is	calculated. 
 
The	 power	 of	 these	 models	 in	 biology	 has	 been	 that	 they	 provide	 a	 framework	 for	 combining	
modelling	and	experiments	 to	uncover	 the	rules	of	 interaction	of	 individual	animals	 in	more	and	
more	detail	[19,20].	 	 In	many	cases,	this	has	led	the	initial,	rather	naive	models	to	be	replaced	by	
more	 realistic	 models	 that	 capture	 details	 of	 animal	 behavior	 [19,22].	 Some	 of	 this	 process	 has	
involved,	 what	 would	 today	 be	 called,	 machine	 learning	 [23,24].	 However,	 the	 most	 successful	
studies	in	collective	motion	have	started	from	the	viewpoint	of	creating	a	simulation	model	based	on	
simple	rules	of	motion	for	individuals,	comparing	the	model	outcome	with	experimental	data	and	
revising	the	model	to	improve	understanding	[18,19].		
	
It	is	this	modelling	approach	we	adopt	to	tracking	data	in	soccer.	
	
2. Self-propelled	player	model	
There	 is	 good	 reason	 to	 believe	 that	 a	 modelling	 approach	 based	 on	 self-propelled	 particles	
interacting	based	on	zones	can	be	 fruitful	 in	soccer.	Coaches	often	talk	about	 three	playing	zones	
relative	 to	 the	 position	 of	 the	 ball.	 	 Francisco	 Seirul-lo,	 at	 the	 department	 of	 methodology	 FC	
Barcelona,	outlines	three	zones	(1)	make	an	intervention	(2)	provide	mutual	help	and	(3)	provide	
co-operation	[25,26].	We	now	make	an	interpretation	of	these	zones	that	will	allow	us	to	link	them	
to	a	self-propelled	player	(SPP)	model	(Figure	1b).			

1. Intervention	zone.	This	zone	covers	the	immediate	points	around	the	ball.	It	includes	the	
player	with	the	ball	and	those	defending	players	who	could	touch	or	intercept	it	immediately.		

2. Mutual	help	zone.	Players	in	this	zone	are	relatively	close	position	to	the	ball,	but	further	
away	than	the	players	in	the	intervention	zone.	Teammates	of	the	player	with	the	ball	are	
considered	inside	this	zone	if	they	could	receive	pass	within	a	few	seconds.	Defending	players	
are	in	this	zone	if	they	are	acting	to	intercept	or	defend	a	pass	within	the	next	few	seconds.		

(c) 
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3. Cooperation	zone:	Players	in	this	zone	are	further	away	from	the	play	and	not	expected	to	
receive	 the	 ball	 during	 within	 next	 few	 seconds.	 In	 attack,	 these	 players	 aim	 to	 occupy	
dangerous	areas	of	the	pitch	and	control	space.	In	defense,	they	aim	to	minimize	the	area	used	
by	the	opposition.	

An	example	for	showing	these	zones	is	shown	in	Figure	1,	which	is	a	single	frame	of	a	match	between	
FC	Barcelona	and	Real	Betis,	played	during	the	first	match	day	of	the	2017/2018	La	Liga	season.		

Much	of	the	art	and	science	of	soccer	coaching	is	about	giving	instructions	about	how	players	should	
act	in	these	different	zones.	Our	intention	in	this	paper	is	to	find	a	starting	point	for	an	SPP	model	of	
soccer,	which	builds	on	these	three	zones.		

The	basic	assumption	of	the	model	we	now	develop	is	that	when	a	player's	team	has	the	ball	and	are	
attacking,	the	player	attempts	to	optimally	balance	three	different	criteria,	namely			
	
Pass	probability:	A	player	moves	to	maximize	the	probability	of	pass	success	to	either	himself	or	to	
another	player	[5].	For	example,	by	opening	up	a	passing	lane	either	to	himself	or	a	teammate.	(Figure	
1c)	
	
	 	

	
Figure	2:	Pass	impact	for	two	different	starting	coordinates	of	a	pass	(blue	dot).	Heat	gives	probability	that	a	pass	ending	
at	that	point	results	in	a	goal.	See	Appendix	A.2	for	details	of	how	impact	is	calculated.		
		
	
Impact:	Occupy	point	on	the	field	which	is	maximally	dangerous	[3].	For	example,	a	striker	moves	to	
a	point	directly	in	front	of	goal.	(Figure	2)	
	
Control:		Maximize	the	amount	of	space	controlled	by	the	team	[6].	For	example,	controlling	the	area	
in	front	of	the	penalty	area,	or	the	area	between	the	defensive	lines.	(Figure	3a)	
	
The	mathematical	details	of	the	model	are	given	in	Appendix	A.		
	
With	 relation	 to	 the	 three	 zones	 defined	 above,	 we	 are	 going	 to	 (later	 in	 the	 article)	 test	 the	
hypothesis	that	the	players	in	the	mutual	help	zone	primarily	act	to	maximize	a	combination	of	pass	
probability	and	impact	and	that	players	in	the	co-operation	zone	attempt	to	maximize	pitch	control.	
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That	the	complex	actions	of	a	football	player	can	be	modelled	in	terms	of	these	three	criteria	 is	a	
strong	claim,	and	thus	the	first	aim	of	this	paper	is	to	test	this	hypothesis:	to	what	extent	is	it	possible	
to	model	 the	movement	 patterns	 of	 players	 according	 to	 these	 three	principles?	To	 this	 end,	we	
perform	both	a	quantitative	 comparison	 to	model	predictions	 and	a	qualitative	 evaluation	of	 the	
model	by	professional	players	and	coaching	staff.	
	
To	be	useful	in	a	coaching	context	and	to	improve	their	decision-making,	the	value	of	different	actions	
should	be	straightforward	to	present	to	the	players	in	post-match	analysis.	Thus,	the	second	aim	is	
to	look	at	the	insights	that	are	gained	from	this	model	and	to	discuss	these	insights	with	players	in	a	
coaching	intervention.		

In	order	to	simulate	attacking	situations	our	model	should	(given	an	initial	state	of	players	positions	
and	velocities,	and	ball	position)	return	an	optimal	position	for	all	the	attacking	players	based	on	a	
weighted	combination	of	passing	probability,	impact	and	control.	To	do	this,	we	make	one	further	
assumption:	that	all	the	attacking	players	can	‘see’	in	to	the	very	near	future.	In	soccer	(and	other	
sports)	players	are	continuously	predicting	the	next	movements	of	their	opponents	and	the	ball	in	
order	to	gain	advantage	over	them.	Indeed,	players	often	praise	their	teammates	and	players	in	other	
teams	 for	 their	ability	 to	 see	 the	game	 in	 the	 future.	Moreover,	 there	 is	 evidence	 from	studies	of	
collective	motion	 of	 pedestrians	 that	 humans	make	movement	 decisions	 based	 on	 the	 projected	
positions	of	others	[27]	and	studies	of	cognition	during	sporting	activities	[28].		
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Figure 3: (a) Pitch control before the pass is played in the situation shown in figure 1 (b) Pitch control directly after the pass is 
received (c) As (b) but in this case the player labelled ‘Disruptive runner’ is positioned so as to maximize pitch control given the 
positions of the other players.  
 
 

(a) 

(b) 

(c) 
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We	thus	base	each	player’s	optimization,	not	on	the	current	position	of	all	the	players	but	instead	on	
their	future	positions.	For	a	focal	player	we	ask,	given	that	he	knows	the	future	positions	of	all	his	
teammates	and	the	opposition,	where	is	the	optimal	position	for	him	to	stand	to	maximize	a	weighted	
of	pass	probability,	impact	and	control.	Figure	3b	and	3c	give	the	real	and,	respectively,	simulated	
optimal	positions	for	the	disruptive	runner	in	our	example	assuming	he	is	trying	to	maximize	pitch	
control.	In	this	example,	the	optimal	position	is	very	close	to	the	actual	positioning,	because	in	both	
cases	 the	 player	 occupies	 a	 small	 pocket	 of	 space	 behind	 the	 defense.	 For	more	 details	 see	 the	
illustrative	video	at	https://youtu.be/K-pP6W1FGIA.		

In	the	next	section	we	make	a	quantitative	comparison	between	the	simulation	model.	In	section	4	
we	 present	 visualizations	 and	 model	 simulations	 for	 players	 in	 order	 to	 make	 a	 qualitative	
comparison	and	to	perform	a	coaching	intervention.	

3. Quantitative	comparison	of	data	and	simulation	
	
Our	hypothesis	was	that	the	movements	of	players	at	different	distances	from	the	ball,	i.e.	different	
zones,	would	be	predicted	by	different	optimization	criteria.	We	also	expected	players	in	different	
playing	roles,	i.e.	attacking	players,	wingers,	central	midfielders,	etc.	to	have	different	optimization	
criteria.	
	
In	order	to	evaluate	the	model	quantitatively	we	identified	all	passes	that	started	in	the	final	third	
during	two	of	Hammarby’s	home	games	(against	Malmö	FF	and	IFK	Göteborg).	For	each	player,	at	
the	time	of	each	pass,	we	calculated	the	model’s	prediction	according	to	seven	different	optimization	
criteria:	pass	probability	(PP);	pitch	control	(PC);	pitch	impact	(PI);	pass	probability	and	pitch	control	
(PP*PC);	pass	probability	and	pitch	impact	(PP*PI);	pitch	control	and	pitch	impact	(PC*PI):	and	all	
three	 criteria	 (PP*PC*PI).	 Notice	 that	 since	 PP,	 PC	 and	 PI	 are	 all	 probabilities,	multiplying	 them	
together	also	gives	a	probability.	For	example,	PP*PI	is	the	probability	of	a	pass	being	received	and	a	
goal	resulting	from	that	pass.	As	a	control,	we	further	defined	an	eighth	optimization	criteria	of	the	
player	 staying	 in	 the	 current	 position	 (CP).	 Each	 of	 these	 eight	 criteria	was	maximized	 over	 the	
duration	of	the	pass,	up	to	a	maximum	two	second	interval.	

We	 computed	 the	 reachable	 areas	 for	 all	 the	 players	 that	 we	want	 to	 simulate	 and	 sample	 200	
random	points	inside	each	of	them.	Equations	(6)	and	(7)	(in	the	Appendix)	were	used	to	compute	
the	points	on	the	pitch	that	the	players	can	reach	between	the	start	and	end	frame.	The	only	thing	
that	we	need	to	know,	apart	from	the	current	player	position	and	speed	(which	determines	the	center	
of	the	reachable	area	with	Equation	(6))	is	the	timespan	between	the	start	and	end	frame	(which	
gives	 the	 radius	 of	 the	 area,	 as	 in	 Equation	 7).	 For	 each	 reachable	 point	 we	 applied	 the	 eight	
optimization	criteria	and	selected	the	point	that	optimized	each	of	the	criteria.	

Figure	4a	shows	the	distance	in	meters	between	the	positions	of	the	players	predicted	by	three	of	the	
optimization	criteria	(PC,	PP*PI	and	CR)	and	their	actual	position	after	a	pass	has	been	made.	In	this	
figure,	the	player’s	positions	are	ordered	as	a	function	of	their	distance	from	the	target	of	the	pass.	
So	that	the	player	who	receives	the	pass	has	ordinal	distance	1.	The	next	nearest	player	to	the	pass	
target	has	ordinal	distance	2	and	so	on,	with	the	furthest	away	player	assigned	ordinal	distance	10	
(the	player	who	makes	the	pass	is	excluded	from	the	analysis).		
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For	 the	Malmö	match,	 the	 best	 predictor	 of	 the	 position	 of	 the	player	 receiving	 the	 ball	 (ordinal	
distance	1)	was	PP*PI,	outperforming	both	the	PC	model	and	the	control	model.	Furthermore,	for	the	
2	or	3	players	 closest	 to	 the	ball,	 the	PP*PI	 criteria	best	predicts	 the	position	of	 the	players.	For	
ordinal	distances	of	4	or	greater	the	current	position	(CP)	predicts	positions	best.	For	the	Göteborg	
match,	 the	 PP*PI	 was	 only	 better	 than	 the	 CP	model	 for	 the	 player	 receiving	 the	 ball,	 and	 only	
marginally	so.	

	
	

	
	
Figure	4:	Comparison	of	positions	predicted	by	model	simulation	and	actual	position.	Error	bars	indicate	standard	errors.	
(a)	Distance	between	model	prediction	for	PC,	PP*PI	and	CP	(current	position)	models	and	actual	position	taken	for	21	
passes	made	by	Hammarby	in	the	final	third	against	Malmö	(b)	Same	data	organized	by	player	position	in	a	4231	formation	
(c)	Distance	between	model	prediction	for	PC,	PP*PI	and	CP	(current	position)	models	and	actual	position	taken	for	41	
passes	made	by	Hammarby	in	the	final	third	against	Göteborg	(d)	Same	data	organized	by	player	position.	
	
In	terms	of	our	zonal	model	of	football	(Figure	1b)	these	results	suggest	that	players	in	the	mutual	
help	zone	tend	to	maximize	PP*PI.	That	is,	the	players	nearest	the	ball	maximize	the	probability	of	
both	receiving	a	pass	and	of	a	goal	resulting	from	that	pass.		The	results	also	suggest	that	the	mutual	
help	 zone	 typically	might	 encompasses	 the	 nearest	 two	 or	 three	 players.	 The	 other	models	 (not	
shown	in	the	figure)	give	poorer	predictions	than	PP*PI	in	most	cases.	We	thus	considered	PP*PI	the	
best	model	of	the	mutual	help	zone.	
		
The	attacking	players	(10,	RW,	LW)	tend	to	be	closest	to	the	position	that	maximized	PP*PI.	Figure	
4b,	in	the	Malmö	match	it	was	the	player	playing	the	10,	Niko	Djurdjic,	and	the	right-winger	(LW),	

(a) (b) 

(d) (c) 



   

 10 

Vladimir	Rodic,	whose	movements	were	best	predicted	by	optimizing	passes	into	high	impact	areas.	
In	both	matches	(see	also	Figure	4d)	the	attacking	players	(for	example,	10,	RW,	CF,	LW)	were	better	
predicted	by	PP*PI	than	defending	players	(for	example,	CB1,	CB2,	GK).		
	
Our	hypothesis	was	that	pitch	control	(PC)	would	provide	a	good	model	of	players	in	the	co-operation	
zone.	This	turned	out	not	to	be	the	case.	The	current	position	of	a	player	was,	at	all	ordinal	distances,	
a	better	predictor	of	position	than	pitch	control.	Current	position	was	also,	in	the	majority	of	cases,	a	
better	 predictor	 even	when	 accounting	 for	 pitch	 impact	 (PC*PI).	 This	 result	 does	 not	 imply	 that	
standing	still	is	the	optimal	model	for	players	in	the	co-operation	zone,	instead	it	means	that	we	have	
not	yet	identified	a	model	that	outperforms	the	control.		
	
4. Qualitative	comparison	and	coaching	intervention	
	
During	the	Allsvenskan	season	2019	we	used	the	visualization	and	simulations	as	part	of	coaching	
interventions	within	Hammarby’s	first	team.	Two	of	the	co-authors	met	with	the	entire	team,	smaller	
groups	 or	 individual	 players	 and	 discussed	 various	 attacking	 situations.	 About	 ten	 structured	
meetings	 took	 place	 with	 a	 presentation	 made	 on	 a	 larger	 screen,	 along	 with	 about	 twenty	
unstructured	meetings	where	one	of	the	authors	discussed	performance,	using	visualizations	on	a	
laptop,	with	players	over	coffee	or	lunch.	Further	meetings	took	place	with	the	head	coach,	Stefan	
Billborn,	and	assistant	coach,	Joachim	Björklund,	to	discuss	player	performances.	
	
We	presented	examples	of	match	situations,	analyzed	using	our	model,	 to	the	players	 involved	 in	
them.	These	discussions	were	part	of	our	first	scientific	aim,	giving	us	an	additional	way	of	judging	
the	realism	of	our	model.	Does	it	suggest	passes	and	movements	that	real	players	make	or	consider	
reasonable?	 Such	 an	 assessment	 does	 involve	 a	 degree	 of	 subjectivity,	 but	 in	modelling	 complex	
collective	motion	it	is	a	very	useful	way	of	checking	that	a	model	makes	sense	[29,30].	Models	that	
do	not	pass	an	‘eye	test’	are	less	likely	to	be	useful	in	coaching	interventions,	simply	because	players	
and	coaches	will	not	give	credence	to	their	output.	
	
The	 second	 scientific	 aim	 was	 to	 see	 if	 the	 approach	 provided	 a	 way	 of	 conducting	 post-match	
analysis.	 We	 asked	 both	 coaches	 and	 players	 at	 Hammarby	 involved	 in	 the	 simulated	 match	
situations	 to	 comment	 on	 what,	 if	 anything,	 they	 learned	 from	 the	 visualizations.	 The	 players	
discussed	the	output	of	the	model	between	themselves	and	with	two	of	the	co-authors.	
	
4.1. Passing	probabilities	

We	started	by	presenting	the	pass	possibility	model	for	passes	occurring	within	the	mutual	support	
zone.		Figure	5	shows	three	pass	situations	in	Hammarby’s	matches	during	the	first	half	of	the	2019	
season,	 and	 three	 from	 later	 in	 the	 season.	 The	 first	 example	 (Figure	 5a)	 is	 chosen	 because	 the	
optimal	pass	as	identified	in	the	model	was	different	than	that	chosen	by	the	player.	In	this	example	
Kacaniklic	(20),	chose	a	pass	with	a	low	probability	of	success,	to	Tankovic	(22),	over	a	more	likely	
to	 succeed	 pass	 to	Kjartansson (17).	 Even	 accounting	 for	 pitch	 impact	 (PP*PI),	 the	 choice	 was	
suboptimal.	The	players,	including	Kacaniklic,	and	coaches	who	saw	this	situation	were	in	unanimous	
agreement	 that	 he	 had	 made	 a	 poor	 decision	 and	 that	 the	 model	 was	 correct	 in	 its	 alternative	
suggestion.		
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Figure	5:	Pass	decisions	in	four	different	situations	for	Hammarby	during	the	2019	season.	Colur	shows	probability	of	a	
successful	pass	success	probability,	green	100%	to	red	0%,	predicted	by	the	model.	Hammarby	players	represented	with	
green	circles,	with	player	numbers.	Dotted	line	traces	balls	trajectory	one	second	in	to	the	future.	(a)	Kacaniklic	(20)	failed	
pass	to	Tankovic	(22)	against	Kalmar	(red).	(b)	Khalili	(7)	failed	pass	to	Widgren	(3)	against	Östersunds.	(c)	Tankovic	(22)	
successful	pass	to	Andersen	(8)	against	Djurgården.	(d)	Kacaniklic	(20)	successful	pass	to	Djurdjic	(40)	against	Sundsvall	
(e)	Bojanic	 (8)	 successful	pass	 to	Tankovic	 (22)	against	Häcken	 (f)	 (22)	Kacaniklic	 (20)	assist	 to	Djurdjic	 (40)	against	
Häcken.	
	
The	pass	made	by	Khalili	(7)	in	figure	5b	was	analyzed	on	request	of	the	player	himself.	In	this	case,	
Tankovic	(22)	had	expressed	frustration	that	Khalili	should	have	passed	him,	instead	of	making	the	
longer	pass	to	the	left	back,	Widgren	(3).	The	model	showed	that	if	the	actual	pass	Khalili	made,	had	
it	reached	its	target,	was	the	optimal	choice	in	terms	of	pass	success	probability	and	impact.	Talking	

(a) (b) 

(c) (d) 

(e) (f) 
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about	 this	 situation	 led	 to	a	more	 in-depth	discussion	about	pass	 choice,	 in	particular	 the	higher	
impact	of	playing	longer	passes	across	the	face	of	the	box	to	change	the	direction	of	play.	
	
The	pass	in	figure	5c	came	late	in	the	match	between	Hammarby	and	Djurgården.	It	is	a	more	complex	
pass	than	those	in	5a	and	5b	and	was	only	made	possible	by	the	sudden	acceleration	of	Andersen	(8).	
Again,	the	players	agreed	that	the	model	captured	the	opportunity	which	both	players,	passer	and	
receiver,	had	created.	In	this	case,	the	discussion	around	the	pass	focused	on	the	optimal	position	of	
the	players	after	it	was	played	(see	section	4.3).	
	
In	these	examples	and	others,	the	players	clearly	understood	plots	of	pass	probabilities.	Later	in	the	
season,	when	shown	pass	probability	in	figure	5d,	Djurdjic	(40),	who	received	the	pass,	commented,	
“Alex	(20)	does	that	so	well,	holding	up	the	ball	and	not	playing	the	first,	most	obvious	pass.	This	is	
what	I	keep	telling	the	others.	Be	patient.”		
	
These	comments	and	others,	demonstrated	that	this	particular	group	of	attacking	players	could	use	
images	showing	pass	probabilities	 to	discuss	with	coaches	and	with	each	other	how	they	played.	
There	was	a	feeling	among	the	players,	commentators	and	fans	that	their	decision-making	in	these	
situations	improved	over	the	season.	This	is	exemplified	a	combination	of	passes	between	Bojanic	
(6),	Tankovic	(22),	Kacaniklic	(20)	and	Djurdjic	(40)	in	figure	5e	and	5f,	from	the	last	match	in	the	
season.	
	
4.2. Pitch	control	

Under	our	zonal	model	of	soccer,	the	co-operation	zone	involves	all	players	who	don’t	have	or	cannot	
immediately	receive	the	ball.	The	correct	positions	in	this	zone	are,	in	theory	at	least,	decided	by	the	
tactics	set	out	by	the	manager.	Working	together	with	Hammarby	head	coach	Stefan	Billborn	and	
assistant	 coach	 Joachim	Björklund,	we	 created	 a	 template	 for	how	we	 should	defend	 in	different	
situations,	using	a	combination	of	pitch	control	and	pitch	impact	as	a	guide.	

Once	this	template	was	created	we	used	it	in	discussions	with	the	players.		We	cannot	reveal	the	full	
template	since	it	is	an	internal	tactical	document	for	the	club,	but	we	give	one	example	where	we	
could	use	pitch	control	to	show	how	a	player	was	out	of	position.		Figure	6a	shows	the	pitch	control	
for	both	teams.	The	player	of	most	interest	in	this	situation	is	Vladimir	Rodic	(11),	furthest	from	the	
ball.	He	is	playing	in	a	left-back	position	and	although	he	controls	a	lot	of	area	in	this	position,	it	is	of	
very	low	impact.	By	showing	Rodic	figure	6b,	in	which	Widgren	(3)	is	positioned	more	centrally	in	a	
similar	situation,	we	were	able	to	explain	how	Rodic	could	improve	his	own	positioning.	In	figure	6b,	
Widgren’s	more	central	position	allows	both	Andersen	(8)	and	Bojanic	(6)	to	move	closer	to	the	ball	
and	 control	 areas	 with	 higher	 pitch	 impact.	 Rodic	 immediately	 saw	 the	 advantage	 of	Widgren’s	
positioning,	 and	 the	 difference	 between	 the	 two	 images,	 and	 said,	 “I	 didn’t	 properly	 understand	
where	I	was	meant	to	be	in	these	situations,	and	now	I	do.”		

The	left-back	role	was	unusual	for	Rodic,	partly	explaining	why	he	was	incorrectly	positioned.	When	
the	same	comparison	was	shown	to	Widgren,	the	regular	left	back,	he	said,	“Yes,	of	course,	my	role	is	
to	move	in	to	midfield	when	we	are	in	the	final	third.”	
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Figure	6:	Pitch	control	in	two	different	situations	for	Hammarby	during	the	2019	season.	Colur	shows	pitch	control,	green	
100%	to	blue/red	0%.	Hammarby	players	represented	with	green	circles,	with	player	numbers.	(a)	Rodic	(11)	is	poorly	
positioned	in	terms	of	controlling	dangerous	areas	when	playing	against	Helsingborg	(b)	Widgren	(3)	is	better	positioned	
in	a	similar	situation	against	Sundsvall.	

	
4.3. Simulating	future	positions	

In	the	SPP	simulations	presented	to	the	players	the	weightings	(PP,	PI	and	PC)	were	chosen	manually,	
based	on	the	zone	each	player	is	in.	Automatically	identifying	the	zone	of	a	player	is	difficult,	because	
it	depends	on	context.	Moreover,	in	section	3,	we	could	not	find	any	one	simple	optimization	criteria	
which	 players	 tend	 to	 follow.	 Eventually,	 we	 envisage	 that	 player	 zones	 can	 be	 automatically	

(a
) 

(b) 

(a) 
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identified	by	an	algorithm	based	on	player	positioning,	but	 in	order	 to	 get	useable	 results	 in	 the	
current	study	we	manually	assigned	the	roles	to	the	players.		

Even	though	roles	were	assigned	on	a	case-by-case	basis	we	did	develop	some	general	rules	of	thumb	
by	which	we	decided	the	criteria	optimized	in	each	simulation.	Specifically,	attacking	players	in	the	
mutual	help	zone	maximize	pass	probability	multiplied	by	pitch	impact	(PP*PI)	and	players	in	the	
co-operation	zone	attempt	to	maximize	either	impact	and	control.	In	most	cases,	we	would	assign	
one	 or	 two	 players	 in	 the	 co-operation	 zone	 a	 striker	 role,	 and	 they	 maximize	 impact	 (i.e.	 find	
dangerous	positions).	The	rest	of	the	team	either	maximize	control	or	do	not	maximize	any	criteria.		

The	simulations	were	particularly	useful	for	allowing	players	to	explore	alternatives	to	the	decisions	
they	actually	made	when	in	the	mutual	support	zone.	Figure	7a	shows	an	attacking	situation,	where	
the	 center	 forward,	Kjartansson	 (17)	has	 taken	 the	ball	 in	 to	 the	box.	 Figure	7b	 shows	 the	 same	
situation	 1.5	 seconds	 later,	 with	 the	 shaded	 player	 positions	 showing	 the	 optimal	 positioning	
according	to	the	model.	In	this	situation	we	made	the	following	assumptions	in	modelling	the	players:	
Tankovic	 (22)	 and	 Kacaniklic	 (20)	 are	 in	 the	 mutual	 support	 zone	 and	 maximize	 pitch	 impact	
multiplied	 by	 passing	 probability;	 Djurdjic	 (40)	 is	 in	 the	 co-operation	 zone	 and	 optimizes	 pitch	
impact	only;	Söderström	(13)	and	Andersen	(8)	are	in	the	co-operation	zone	and	aim	to	maximize	
pitch	control;	and	Solheim	(77)	is	assumed	to	minimize	the	opposition’s	pitch	control.	

For	 two	 players,	 Kacaniklic	 (20)	 and	Djurdjic	 (40),	 the	 simulated	 positions	 are	 very	 close	 to	 the	
positions	they	actually	adopted	1.5	seconds	later.	In	the	case	of	Kacaniklic,	an	opposition	defender	
marked	 him	 and	 the	 simulation	 confirms	 that	 his	 run	 was	 the	 best	 he	 could	 do.	 The	 model’s	
suggestion	for	Tankovic	(22)	differs	from	his	actual	run	in	to	the	box.	The	simulation	indicates	that	a	
better	choice	would	be	for	him	to	take	a	supporting	position	on	the	side	of	the	box,	where	there	are	
no	opposition	players	and	he	could	potentially	receive	a	pass	from	Kjartansson	(17).	When	presented	
to	 players	 and	 coaches	 this	 suggestion	was	 considered	 reasonable,	 although	 it	was	 by	no	means	
conclusive	that	Tankovic	had	made	the	incorrect	decision.	

The	model	 also	 suggested	 that	 Söderström	(13),	Andersen	 (8)	 and	Solheim	 (77)	 should	all	move	
further	up	the	pitch	than	they	did.	The	coaches	agreed	strongly	with	the	model	results	in	this	case,	
and	this	became	a	focus	for	discussions	with	the	full-backs	and	central	midfielders	during	the	season.	
They	were	encouraged	to	push	up	the	pitch	during	attacking	situations,	even	when	they	were	not	
immediately	involved	in	an	attack.	

Similar	 conclusions	were	 drawn	 from	 other	 simulations	 of	 final	 third	 attacking	 simulations.	 One	
example	is	given	in	figure	7c	and	7d.	In	this	case,	Tankovic	(22),	Khalili	(7)	and	Kjartansson	(17)	are	
all	considered	to	be	in	the	mutual	help	zone,	and	thus	maximize	pitch	impact	multiplied	by	passing	
probability.	Again,	the	model	suggests	that,	Tankovic	should	run	along	the	side	of	the	box	and	that	
Khalili	 should	move	 further	 forward.	When	 these	 results	were	presented	 to	Khalili	he	noted	 that	
there	was	only	five	minutes	left	in	this	match,	a	derby	against	rivals	Djurgården,	and	Hammarby	had	
a	2-1	lead.	He	decided	in	this	case	not	to	participate	in	the	attack.	Other	players	commented	that,	at	
this	point,	they	were	extremely	tired,	and	pushing	up	the	pitch	was	risky.	In	general,	the	simulations	
provided	a	way	for	the	players	to	talk	to	each	other	and	the	coaches	about	their	decisions	in	a	more	
open	and	constructive	way.	
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Figure	7:	Simulations	of	three	match	situation	for	Hammarby	during	the	2019	season.	Color	shows	pitch	control	predicted	
by	the	model	before	(a,c,e)	and	after	(c,d,f)	a	pass	is	made.	See	main	text	for	details	of	each	of	these	situations.	Optimal	
positions	based	on	seeing	1.5	second	in	to	the	future	are	shown	as	‘shadows’	while	actual	positions	are	filled	in.	Dotted	line	
joins	shadows	to	true	position.	
	
Another	aspect	of	the	game	for	which	the	simulations	proved	useful	was	in	talking	about	press	in	the	
opponent’s	 half.	 Figure	 7e	 and	 7f	 show	 the	 situation,	 respectively,	 before	 and	 after	 a	 1	 second	
simulation	where	opponents,	Häcken,	have	the	ball	deep	in	their	own	half.	Here,	Khalili	(7),	Bojanic	
(6),	Djurdjic	(40)	and	Kacaniklic	(20)	are	all	assumed	to	optimize	pitch	control,	to	occupy	as	much	of	
the	field,	and	thus	block	passes,	as	much	as	possible.	All	four	player	positions	are	very	close	to	the	
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optimal	suggested	by	the	model.	As	such,	the	model	confirmed	that	a	tactic	the	coaches	knew	to	be	
effective	was	working	as	it	should,	and	that	all	the	players	were	adopting	near	optimal	positions.	

5. Effect	of	intervention	
	
Coaching	based	on	the	output	of	a	simulation	model	has	never	before	been	attempted	in	soccer.	With	
that	in	mind,	the	main	scientific	aim	of	these	coaching	interventions	was	to	judge	the	degree	to	which	
players	could	relate	to,	discuss	and	understand	the	visualizations	and	the	outcome	of	the	model.	The	
experiment	was	not	controlled	in	the	sense	that	we	could	study	the	effect	on	players	who	did	and	
didn’t	 receive	 the	 intervention.	 Indeed,	 the	 environment	 of	 a	 soccer	 club	 meant	 a	 controlled	
experiment	wasn’t	possible.	Moreover,	 it	was	unavoidable	 that	some	players	were	more	engaged	
than	others,	and	thus	received	more	feedback.		
	
The	visualizations	and	simulation,	were	 further	supplemented	by	visual	aids	during	 the	coaching	
interventions.	These	 included	showing:	attacking	runs	by	Barcelona	players;	 the	passing	patterns	
and	positioning	of	Manchester	City	during	sustained	attacks;	and	shot	maps	showing	the	success	of	
shooting	(expected	goals)	from	different	positions	around	the	penalty	area.		
	
Hammarby’s	play	 improved	as	 the	 intervention	 season	progressed,	with	 the	 team	scoring	33.9%	
more	goals	than	any	other	team	in	Allsvenskan,	and	beating	the	goal	scoring	record	for	the	league	
with	an	average	of	2.5	goals	per	match.	Niko	Djurdjic	was	chosen	as	best	forward	in	Allsvenskan.	The	
intervention	was	not	extensive	enough,	making	up	only	a	small	fraction	of	the	time	the	players	spent	
training	and	talking	about	football,	to	be	considered	as	a	primary	cause	of	this	footballing	success.	
The	players	and	other	aspects	of	coaching	were	much	more	important.			
	
Our	 results	 do	 however	 point	 towards	 a	 relationship	 between	 a	 coaching	 staff	 that	 are	 open	 to	
assessing	 decision-making	 using	 data,	 players	 who	 are	 able	 to	 talk	 and	 reason	 about	 their	 own	
performance	using	visualizations	and	success	in	attacking	play.	At	the	end	of	the	season,	there	was	
consensus	throughout	the	club---from	the	chairman	and	the	director	of	football,	through	the	head	
coach	and	the	players	themselves---that	the	players	could	gain	from	the	approach	taken	here.	The	
first	author	of	this	article	was	offered	an	extended	contract	by	the	club.	
	
6. Automated	player	feedback	and	other	applications	
	
Once	we	had	familiarized	the	players	with	these	types	images	and	films,	we	created	an	automated	
system	 that	 shared	 videos	 of	 important	 moments	 within	 matches.	 The	 system	 automatically	
identifies	situations	where	players	performed	actions	which	significantly	decreased/increased	their	
own	team’s	pitch	impact	or	reduced	the	opposition’s	pitch	impact.	For	example,	if	they	completed	a	
pass	with	high	impact	(as	illustrated	in	figure	2)	then	it	would	be	added	to	a	personalized	highlight	
reel.	 After	 the	 match	 the	 highlight	 reel	 was	 shared	 with	 the	 players	 through	 our	 internal	
communication	 app,	 showing	 both	 their	 top	 10	 actions	 increasing	 pitch	 impact	 and	 bottom	 3	
decreasing	pitch	impact.	
	
The	highlights	were	shown	first	the	clip	in	video	form,	then	as	a	video	of	pitch	control	for	the	situation	
then	finally	a	video	of	them	both	simultaneously.	While	the	results	of	section	4	showed	that	players	
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do	not	typically	appear	to	optimize	pitch	control,	they	did	find	videos	of	pitch	control	intuitive	and	
useful	visualizations	of	how	they	are	controlling	space.	
	
This	 automated	 feedback	 is	 just	 one	 of	 many	 potential	 applications	 of	 this	 type	 of	 approach.	
Automatically	identifying	key	moments	in	a	match,	then	using	a	SPP	model	to	find	the	optimal	actions	
at	 those	 points	 in	 time,	 can	 give	 players	 a	 range	 of	 feedbacks	 on	 their	 positioning	 and	 decision-
making.	In	particular,	 it	can	be	used	for	“ghosting”	or	showing	“what	if”	scenarios	to	players	[33].	
This	can	be	particularly	useful	at	an	academy	level	or	with	younger,	developing	players.	The	approach	
can	be	made	interactive,	so	players	can	see	the	effect	of	changing	their	positions.	For	example,	asking	
“what	would	have	happened	if	I	had	made	this	run	instead?”.	In	currently	available	‘coach	paint’	tools	
or	in	TV	commentary,	the	user	can	‘move’	a	player	and	say	what	he	or	she	could	have	done	better,	
but	this	does	not	properly	account	for	how	the	other	players	would	have	moved	had	the	player	moved	
in	proposed	manner.	The	SPP	 techniques	described	here	can	solve	 this	 type	 ‘what	 if’	problem	by	
simulating	all	the	other	players	according	to	the	one-second-rule.	
	
7. Conclusions	
	
This	 article	 documents	 a	 first	 step	 in	 predicting	 and	modelling	 the	 ‘self-propelled’	movement	 of	
soccer	 players.	 This	 approach	 is	 complementary	 to	 a	 purely	 data-driven	 one,	 where	 player	
movements	 are	 predicted	 by,	 for	 example,	 feeding	 trajectories	 in	 to	 a	 neural	 network	 [12].	 The	
advantage	of	our	approach	is	that	it	builds	on	existing	coaching	knowledge	and	the	assumptions	can	
easily	be	explained	to	coaches	and	players.	Building	all	of	this	knowledge	in	to	a	model,	validated	
against	data,	for	a	wide	variety	of	match	situations,	is	a	large	project	of	which	this	paper	is	a	first	step.	
	
Here	we	have	established	that	the	zonal	model,	previously	used	informally	by	coaches,	can	offer	a	
starting	point	for	a	simulation	model.	Specifically,	the	mutual	help	zone	corresponds	to	finding	the	
position	that	maximizes	the	probability	of	both	receiving	the	pass	with	the	maximum	pitch	impact.	
Both	 quantitative	 comparison	 of	 simulation	 and	 data	 and	 qualitative	 discussions	 with	 players	
confirms	 that	 the	 two	 or	 three	 players	 closest	 to	 the	 point	 to	 which	 a	 pass	 is	 delivered	 can	 be	
considered	in	the	mutual	help	zone.		
	
In	 the	discussions	with	players	and	coaches,	pitch	control	proved	a	useful	 concept	 for	discussing	
tactics	and	positioning	in	the	co-operation	zone	(Figure	6).	It	was	not	however	an	accurate	model	for	
movement	of	players	in	the	co-operation	zone	when	their	teammates	were	passing	the	ball	in	the	
final	 third.	 Indeed,	none	of	our	models	captured	player	movement	 in	 these	situations	better	 than	
simply	standing	still.	The	discussions	with	the	players	showed	that	pitch	control	could	potentially	
prove	a	more	useful	model	of	co-operative	movement	when	pressing	(Figure	7).	 	We	envisage	an	
approach	to	soccer		
	
Although	the	approach	taken	here	emphasizes	simulation,	the	ultimate	aim	is	not	to	build	a	complete	
soccer	simulation.	Rather,	the	aim	of	this	research	should	be	to	build	up	a	set	of	coaching	tools	that	
explain	what	players	do	and	suggest	alternative	in	certain	situations.	Creating	these	tools	will	involve	
a	modelling	cycle,	very	similar	to	that	used	in	collective	animal	behavior,	in	which	models	of	different	
situations	are	iteratively	improved,	both	through	quantitative	and	qualitative	comparisons	of	data	
and	model	 [20,21].	This	will	happen	most	efficiently	 if,	as	has	been	the	case	here,	 the	research	 is	
conducted	within	professional	football	clubs.	
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Appendix	A:	Mathematical	model	
	
Here	 we	 describe	 the	 mathematical	 details	 underlying	 each	 of	 the	 three	 maximization	 criteria	
outlined	above.	
	
A.1	Pass	probability		
Spearman	et	al.	proposed	a	probabilistic	approach	to	model	the	probability	of	success	of	a	pass	[5].	
We	base	our	work	on	an	implementation	of	their	model,	with	a	few	changes	that	improve	the	ball	
dynamics.	In	Spearman	et	al.	the	ball	movement	is	modelled	using	a	pure	ballistic	approach,	i.e.,	only	
aerodynamic	drag	is	considered	to	be	responsible	of	the	natural	deceleration	of	the	ball	during	a	pass.	
The	general	formula	of	aerodynamic	drag	is	used	with	no	Magnus	force	giving	an	equation	of	motion	
for	the	ball	of	
	
	 𝑟⃗̈$%&' = −

1
2𝑚

𝜌𝐶/𝐴𝑟̇𝑟⃗̇	 (1)	

	
where	𝑚 = 0.42	𝑘𝑔	is	the	mass	of	the	ball,	𝜌 = 1.225	 𝑘𝑔 𝑚9⁄ 	is	the	density	of	the	air	[31],	𝐶/ = 0.25	
is	the	so-called	drag	coefficient	and	𝐴 = 0.038	𝑚=	is	the	cross	section	area	of	the	ball.	The	omission	
of	the	Magnus	force,	which	alters	the	trajectory	as	a	result	of	differences	in	pressure	on	opposite	sides	
of	the	object,	is	made	primarily	because	of	the	lack	of	data	about	the	spinning	movement	of	the	ball.		
	
Since	many	of	the	important	passes	in	our	study	are	ground	passes,	during	which	the	ball	is	almost	
all	the	time	in	close	contact	with	the	grass,	friction	needs	to	be	added	to	our	model.		The	equation	of	
motion	here	is	
	
	 𝑟⃗̈ = −𝜇𝑔	𝑟̂	 (2)	
	 	 	
Due	to	the	changing	conditions	of	the	pitch	and	the	unavailability	of	data,	we	settled	on	an	estimate	
of	a	value	of	𝜇 = 0.55,	which	is	a	value	in	the	middle	of	the	interval	that	FIFA	recommends	for	high	
quality	artificial	grass	surfaces.		
	 	
To	determine	how	the	forces	act	along	the	whole	trajectory	of	the	ball	we	performed	some	trial	and	
error	experiments	with	passes	in	which	the	ball	did	not	get	too	high	over	the	pitch	(at	most	10	or	20	
cm),	so	that	they	can	be	considered	to	be	ground	passes.	Comparing	the	real	trajectory	of	the	ball	to	
simulations,	indicated	that	the	first	two	thirds	of	its	trajectory	was	mainly	caused	by	the	aerodynamic	
drag	and	that	ball-grass	friction	was	the	main	force	acting	during	the	last	third	of	the	pass.	Putting	
together	both	forces	with	their	respective	time	intervals,	the	final	equation	of	motion	for	the	ball	we	
used	is	
	
	

𝑟⃗̈ = @
−

1
2𝑚𝜌𝐶/𝐴𝑟̇𝑟⃗̇, 𝑡 ≤

2𝑡D$E
3

−𝜇𝑔	𝑟̂, 𝑡 >
2𝑡D$E
3

	 (3)	
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As	should	be	clear	from	our	discussion	above,	there	is	certainly	scope	for	improving	a	model	of	ball	
dynamics.	
	
To	model	time	taken	for	a	player	to	intercept	the	ball	in	a	certain	pass,	Spearman	et	al.	 	solved	an	
equation	of	motion	for	all	the	players,	with	two	constraints	which	set	limits	to	the	maximum	players'	
speed	 and	 acceleration.	 For	 our	 purposes	 however	 to	 solve	 a	 minimization	 problem	 for	 all	 the	
possible	 points	 along	 the	 trajectory	 of	 the	 pass	would	 be	 too	 computationally	 expensive.	 So,	we	
adopted	the	model	of	Fujimura	and	Sugihara	in	2005	in	which	they	consider	the	players	as	objects	
whose	movements	are	described	by	an	equation	of	motion	with	a	driving	force	(which	represents	the	
force	exerted	by	the	players'	legs)	and	a	drag	force	(which	bounds	their	maximum	possible	speed).	
This	gives	the	following	equation	
	
	 𝑚

𝑑
𝑑𝑡
𝑣⃗ = 𝐹⃗ − 𝑘𝑣⃗	 (4)	

	
whose	solution	is	given	by:	
	
	

𝑥⃗ − 𝑥K = 𝑉D$E M𝑡 −
1 − 𝑒OPQ

𝛼
S 𝑒 +

1 − 𝑒OPQ

𝛼
𝑣⃗K	 (5)	

	 	 	
Where	𝑉D$E = 𝐹 𝑘⁄ = 7.8𝑚 𝑠⁄ 	is	the	maximum	velocity	that	a	player	can	reach,	𝛼 = 𝑘 𝑚⁄ = 1.3	is	the	
magnitude	 of	 the	 resistance	 force	 and	 𝑒	 is	 the	 unit	 vector	 that	 denotes	 the	 direction	 of	 the	
acceleration	of	the	player.	The	values	for	these	constants	are	the	same	ones	as	Fujimura	and	Sugihara	
used	in	their	paper	and	were	obtained	by	performing	a	study	with	several	field	hockey	players.	
	 	
With	this	result,	 it	 is	possible	to	see	that	all	 the	points	that	a	player	with	starting	position	𝑥⃗K	and	
initial	velocity	𝑣⃗K	can	reach	are	enclosed	inside	the	circle	with	center	
	
	

𝑥⃗K +
1 − 𝑒OPQ

𝛼
𝑣⃗K	 (6)	

	
and	radius	
	
	

𝑉D$E M𝑡 −
1 − 𝑒OPQ

𝛼
S	 (7)	

	
This	makes	the	finding	of	the	interception	times	for	the	players	easier	than	with	the	minimization	
problem	that	Spearman	proposed.	In	order	to	obtain	them	the	time	must	be	discretized	(we	do	that	
in	steps	of	0.04	seconds)	and,	for	each	time	step,	we	check	the	already	computed	position	of	the	ball	
and	calculate	the	reachable	area	of	the	player.	If	the	current	ball	position	falls	outside	the	circle,	we	
advance	to	the	next	time	step	and	repeat	the	process	until	the	ball	is	in	inside	the	player's	reachable	
area;	that	moment	determines	the	interception	time.	
	
Once	the	physical	models	behind	the	ball	and	the	players	have	been	established,	the	probabilistic	
model	proposed	by	Spearman	et	al.	can	be	used.	Its	main	feature	is	the	usage	of	a	logistic	distribution	
to	determine	the	probability	of	a	player	getting	the	ball	at	time	𝑇	knowing	his	arrival	time	𝑡.		
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	 𝑃YZQ =
1

1 + 𝑒
[\]^_]
√ab cd

	 (8)	

	
Note	that	this	function	does	not	compute	the	probability	for	a	certain	player	to	get	the	ball	during	a	
pass,	but	the	probability	of	him	being	able	to	intercept	the	ball	after	𝑇	seconds	(without	considering	
the	rest	of	the	players).	Furthermore,	another	consideration	that	is	made	is	that	a	player	has	to	be	in	
the	vicinity	of	the	ball	for	a	certain	time	in	order	to	have	control	over	it,	this	is	modelled	with	the	
term:	
	

	
Figure	A1:	Pass	probabilities	and	interception	points	inside	(with	blue	markers)	and	outside	(white	
markers)	the	possible	ground-pass	area	around	the	ball.	
	
	

𝑃(𝑡) = 1 − 𝑒OgQ	

(9)	

	
With	the	combination	of	these	two,	the	final	system	of	differential	equations	that	gives	the	probability	
for	each	player	to	receive	the	pass	is	built	as	follows,	
	
	 𝑑𝑃h

𝑑𝑇
(𝑇) = i1 −j𝑃k(𝑇)

k

l𝑃YZQ,h(𝑇)𝜆	 (10)	

	
In	order	to	analyse	the	pass	probabilities	for	any	given	match	moment	a,	total	of	750	potential	passes	
are	Calculated,	distributed	over	50	angles	all	 around	 the	ball	 and	15	pass	 speeds	between	1	 and	
20	𝑚 𝑠⁄ .	 For	each	of	 these	passes	 the	probabilities	of	pass	 success	 together	with	 their	 respective	
interception	point,	i.e.,	the	location	on	the	pitch	where	it	is	most	likely	to	be	received,	are	computed	
and	a	heatmap	is	generated	showing	the	probability	that	a	teammate	of	the	player	passing	the	ball	
will	receive	it.	Figure	1c	shows	the	points	calculated	in	one	example	in	a	match	between	FC	Barcelona	
and	Real	Betis.		
	
Since	the	simulations	that	we	perform	are	based	on	ground	passes,	it	is	clear	that	there	will	be	some	
areas	on	the	pitch	(mainly	all	of	the	points	that	lay	behind	a	player)	that	cannot	be	reached	with	one	
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of	these	passes,	either	because	the	ball	is	always	intercepted	before	it	gets	there	or	because	a	really	
strong	pass	is	needed	for	the	ball	to	get	there	and	there	is	no	possibility	of	interception	due	to	its	
speed.	 The	 points	 that	 bound	 the	 reachable	 area	with	 a	 ground	 pass	 are	what	 we	 call	 the	 "last	
interception	points".	
	
A.2	Pitch	control		
	 		
Pitch	control	was	proposed	by	Javier	Fernández	and	Luke	Bornn	in	[6].	In	their	work	they	follow	a	
different	approach	than	Spearman's,	basing	it	on	what	they	call	"player	influence	areas"	instead	of	
arrival	times.	The	player	influence	at	a	certain	point	on	the	pitch	𝑝	at	time	𝑡	 is	determined	by	the	
position	and	speed	of	the	player	and	defined	by:	
	
	

𝐼Y(𝑝, 𝑡) =
𝑓Y(𝑝, 𝑡)

𝑓Y(𝑝Y(𝑡), 𝑡)
	 (11)	

	
Where,	
	
	

𝑓Y(𝑝, 𝑡) =
1

q(2𝜋)=𝑑𝑒𝑡[𝐶𝑂𝑉Y(𝑡)]
𝑒𝑥𝑝 M−

1
2
v𝑝 − 𝜇Yw𝑠Y(𝑡)xy

z
𝐶𝑂𝑉Y(𝑡)O{(𝑝 − 𝜇(𝑡))S	 (12)	

	
	 	
Pitch	control	is	also	a	way	of	mimicking	long	passes	in	an	easier	and,	possibly,	more	trustful	way	than	
simulating	the	trajectory	of	a	long	ball	in	the	air	for	two	main	reasons:	the	first	one	is	that	factors	that	
are	 unknown	 with	 the	 datasets	 that	 we	 use	 like	 wind	 speed	 and	 direction	 or	 ball	 spin	 play	 an	
important	role	in	these	passes	and,	even	if	we	could	perfectly	model	the	flight	of	the	ball,	not	all	the	
players	have	the	same	skills	when	sending	high	passes	and	modelling	this	"player	accuracy	factor"	
properly	would	be	almost	impossible.	
	
We	thus	also	use	pitch	control	to	extrapolate	the	pass	probability	model	in	section	A.1.	A	grid	of	points	
is	created	outside	the	zone	that	is	already	covered	by	possible	ground	passes	and,	for	each	of	them,	
we	calculate	pitch	control.	Figure	A1	shows	an	example	of	this	extrapolation	for	a	frame	of	the	same	
game	between	FC	Barcelona	and	Real	Betis.	
	 	 	
A.3	Pitch	impact		
	
Attacking	players,	in	particular	strikers	playing	CF	or	10	roles,	are	often	instructed	by	coaches	to	take	
specific	dangerous	positions	even	though	these	are	not	reachable	by	a	pass	from	the	position	the	ball	
is	now.	These	positions	are	often	directly	in	front	of	goal,	or	at	one	of	the	posts,	where	a	rebounding	
ball	might	provide	a	good-quality	shot	opportunity,	but	they	don’t	necessarily	need	to	be	positions	
which	have	high	pitch	control	or	where	a	pass	is	currently	possible.	The	idea	is	to	be	well	placed	for	
the	second	ball.		
	
To	measure	impact,	we	used	a	model	developed	by	the	company	Twelve	using	event	data	from	three	
historical	seasons	of	the	Premier	League,	La	Liga	and	Champions	League	(output	of	this	model	can	be	
found	at	twelve.football/analytics).	All	the	matches	used	to	train	the	model	are	broken	down	into	
sequences	 of	 possession,	 i.e.,	 fragments	 of	 the	 game	 during	 which	 one	 of	 the	 teams	 holds	 the	
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possession	of	the	ball	without	losing	the	ball	and	without	any	stops	in	the	play	(due	to	fouls,	throw-
ins,	offsides,	etc.).	A	chain	was	considered	broken	and	another	chain	begun	whenever	the	opposition	
team	made	two	consecutive	touches	of	the	ball.		
	
Once	all	actions	are	allocated	to	a	possession	chain	then	two	logistic	regressions	are	fitted	in	order	
to	assign	a	value	to	each	pass.	The	first	regression	is	obtained	by	assigning	each	possession	chain	a	
value	between	0	(if	the	play	ends	without	a	shot)	and	1	(if	the	sequence	finishes	with	a	goal).	This	
gives	the	probability	of	a	pass	(defined	by	its	starting	and	ending	co-ordinates	on	the	pitch)	leading	
to	a	shot.	A	second	regression	is	then	used	to	compute	the	probability	of	a	shot	leading	to	a	goal	(i.e.	
to	obtain	the	expected	goal	value	of	the	shot).	Multiplying	these	two	probabilities	for	every	shot	gives	
the	probability	that	a	pass	of	with	certain	starting	and	ending	co-ordinates	and	qualifiers	is	likely	to	
result	in	a	goal.	It	is	this	value	which	we	call	the	pass	impact.	
	
Figure	3	shows	two	examples	of	the	pass	impact	for	two	different	starting	coordinates	of	the	pass.	A	
limitation	of	this	method	is	that	the	most	valuable	point	on	the	pitch	is	always	the	point	nearest	to	
goal.	In	practice,	however,	these	positions	tend	to	be	offside	and	thus	not	of	maximum	impact.			
	
	
	


