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Abstract 

Probably the hottest topic in sport analytics is the development of prediction models.  However, 
stakeholders often incorrectly assume that changing the input to a prediction model in the real-world 
causes a change in the desired outcome.  This is a subtle but important fallacy.  While considerable 
work has been put forward to see what retrospectively “describes” an effective player/team or 
prospectively “predicts” performance or injury, considerably less analytical work has been put into 
determining “what CAUSES performance to increase” or “what CAUSES soft-tissue injuries to 
decrease”, the latter of which is important to actually change the outcome of games and seasons.  The 
goal of this current work is to show within a Causal Inference framework how valid causal 
conclusions can be made from high-dimensional player tracking data in basketball.  It is suggested 
that this is a critical time regarding data availability, analytical methods development, and personnel 
expertise to start expecting valid causal conclusions to be drawn from data in sport. 

 
 

1. Introduction 
The need for quality defensive play is nearly never in doubt; indeed, the oft-repeated quote is that 
“Offense sells tickets, but defense wins championships.”  The extent to which this axiom is true in 
basketball has been hotly debated.(García et al. 2013) Typical basketball outcomes indicative of 
positive defensive performance are often defined by simplistic metrics such as blocks, defensive 
rebounds, turnover ratio, and opponent field goal percentage, amongst many others.  Previous 
research has focused on descriptive classification of these simplistic metrics and indicated both 
field goal percentage and defensive rebounds are characteristic of winning teams.(García et al. 
2013; Milanović et al. 2016; A. Gómez et al. 2017; Çene 2018)  Importantly, simplistic measures of 
defensive performance that are reported in box scores do not account for other contextual factors, 
such as flow of game over time, location of game, opponent field goal percentage prior to game, 
player location on the court, and others.  More complex models for prediction problems have been 
developed with an application focused on betting markets(Song and Shi 2020; Song et al. 2020) or 
simple game win-loss.(Loeffelholz et al. 2009; Caliwag et al. 2018)  However, neither simplistic 
descriptive studies nor complex prediction models are helpful in demonstrating to coaching staff 
what strategies or style of game-play actually cause a team to win or cause a player to make a shot 
in a given scenario.   

The advent and widespread proliferation of machine learning prediction algorithms in sport may 
mislead coaches, clinicians and front-office staff into thinking that changing some aspect of what 
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goes into a prediction model can actually “cause” an effect in a real-world outcome.  This 
fundamentally misconstrues the purpose and validity of prediction models.  While machine 
learning metrics such as Variable Importance and Shapley Values are helpful in understanding how 
a machine learning model is internalizing and weighing the input data, it does not tell you that 
prospectively changing a data input would cause a change in performance or outcome for the 
player/team.  The latter requires the use of Causal Inference methodologies. 

The field of Causal Inference is dominated by two theoretical approaches, the Rubin Causal 
Model(Rubin 1974) based on the Potential Outcomes framework and the Structural Causal Model 
based on do-calculus.(Pearl 1995)  Both of these frameworks have their ardent adherents and can 
be mathematically equivalent in some instances;(Malinsky et al. 2019) however, the approach used 
in this manuscript is the Potential Outcomes framework because 1) it is theoretically grounded in 
approximating the randomized control trial, which is a recognized gold-standard for causal study 
design; 2) it is nearly a century old, with a wealth of biomedical literature dealing in nuanced 
approaches to various problems; and 3) it explicitly handles nested relationships.  The ability to 
handle nested relationships in causal inference is fundamental to many instances in both sport and 
medicine where important information may only be available (or unobservably encoded) in an 
aggregate form, such as hospital-wide resources or a basketball team’s style of play.(Weber et al. 
2018) Judah Pearl, the most well-known proponent of the Structural Causal Model, has stated that 
he does not believe these nested structures represent causal relationships;(Pearl 2019) however, 
extensive biomedical research in this area demonstrate that failing to model these relationships 
results in incorrect estimands in randomized-control trials.(Candlish et al. 2018; Moerbeek and 
Schie 2019; Vorland et al. 2021)   

High-resolution player tracking systems such as ShotTracker at the collegiate-level and Second 
Spectrum at the NBA-level allow for far more granular detail about the context under which events 
occur in a game, such as a defensive rebound or a made shot.  This three-dimensional position data 
appears to be under-utilized when it comes to deriving causal insights that can be directly applied 
to basketball training, nutrition or game strategy.  The ability to define a causal model for on-court 
performance, whatever the desired outcome metric may be, can be used to ascertain if a certain 
supplement or recovery modality is having a real, causal effect on performance.  This can both 
enhance team/individual performance as well as save franchises/universities hundreds of 
thousands of dollars a year on interventions which have no real causal effects.  The goal of this 
present work is more modest: demonstrate how the Potential Outcomes framework can be 
combined with player tracking in collegiate basketball to determine the Average Treatment Effect 
of defender proximity on scoring likelihood as a function of shot distance. 
 
 

2. Methods 
2.1. Player Tracking Data 
Using the ShotTracker positioning system, 15,835 shots with sufficient data were obtained from 
games in the Big 12 and Mountain West Men’s Basketball leagues for the 2020 and 2021 seasons.  
The ShotTracker system is made up of three components with sensors located within the ball, on 
players, and anchors located within the stadium’s rafters.  Additionally, the ShotTracker system is 
calibrated to each stadium’s court, providing millimeter-level resolution in three-dimensions.  All 
data was accessed via the ShotTracker Application Programming Interface (API); this analysis was 
approved by the West Virginia University’s Institutional Review Board (Protocol #2205569473) 
and the West Virginia University Athletics Department. 
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2.2. Tracking Data Preprocessing 
All recorded shots from the 2020 and 2021 seasons for the within-conference games were 
extracted from the ShotTracker API.  Within the system, all data points have UNIX time but some 
observations are missing game time or shot clock time.  It was possible to interpolate missing game 
time data via linear interpolation using adjacent shots with recorded game times and accompanying 
UNIX time.  Shot clock time was unable to recovered with any validity and was discarded as a data 
source.  Some games had overtime indicated, whereas other games lasting longer than 40 minutes 
did not.  A satisfactory resolution to this issue was not able to be reached so all games were 
truncated at 40 minutes and overtime periods removed from analysis. 
 
The ShotTracker API was also leveraged to obtain general player shooting statistics for the player 
prior to each game.  In this way, there was no information leakage since a player’s 2- and 3-point 
Field Goal percentages going into a given game were aligned with any shots taken during that game.  
For each recorded shot, the on-court player lineup was obtained.  It was found that 9% of shots had 
less than 10 players in their ShotTracker lineup.  This incomplete data was removed from further 
analysis.  For shots with complete lineups, the location of each player on the court was obtained and 
the proximity from the shooter for each defender was calculated via the Pythagorean theorem.  
 

2.3. Causal Inference Analysis 
The Potential Outcomes framework defines estimands in randomized experiments as functions of 
potential outcomes for units.  For each unit under a dichotomous set of treatments, there are an 
array of outcomes a unit could have under treatment 1 or treatment 2.  This framework can be 
aligned with Heisenberg's uncertainty principle where we can state that it is not physically possible 
to know the outcome of BOTH treatment 1 and treatment 2 on a unit with absolute certainty as they 
cannot be observed at the same time, even if all initial conditions are pre-specified.  However, if we 
can make the Stable Unit Treatment Value Assumption, or SUTVA, in a randomized 
experiment/trial, the Average Treatment Effects of an intervention can be discerned.   
 
SUTVA has two parts: 

1. For each unit there is only one form of treatment and one form of control treatment (in a 
dichotomous treatment paradigm) 

2. There is no interference among units or each unit’s outcome remains the same no matter 
what treatment other units receive 

 
SUTVA is explicitly addressed in the study design of randomized control trials and the 
“randomized” aspect of that study design removes any systematic bias in the assignment of a unit to 
a particular treatment by balancing the treatment groups based upon covariates that are perceived 
to be meaningful.  For observational studies leveraging the Potential Outcomes framework, SUTVA 
must be reasonable and it is important to balance treatment assignment on meaningful 
covariates.(Holland 1986)   
 
In the context of the current analysis, our “treatment” is not a binary, but rather the continuous 
“proximity to closest defender” and so meeting SUTVA requires there to be only one “form” of 
defender proximity to shot taken.  Pilot work by our group indicated that the defender’s ‘angle’ to 
the shot had had no meaningful effect on scoring probability and this was the only potential “other 
form” of treatment considered possible.  The second aspect of SUTVA for the current work would 
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assume that defender proximity to one shot does not interfere with the proximity of a defender to 
another shot, an assumption which seems reasonable at face-value. 
 
Having satisfied SUTVA, we assessed if each “unit” or shot could have been randomly assigned to 
any defender proximity (i.e. treatment balance).  Since shot’s are taken by players of different skill 
levels, players are defended by other players of different styles of play, and teams have different 
styles of play both on offense and defense which lead to more “open shots” or more “contested 
shots”, this treatment balance cannot simply be assumed. 

 
2.3.1. Propensity Score & Validation 
Current work requires that, for each observed shot, the defender’s proximity could have been 
randomly assigned or ‘balanced’.(Fong et al. 2018)  We achieved this balance via a non-linear 
generalized additive mixed model propensity score where shots are nested within players and the 
shooter’s team, the team playing at home, the player’s 2-point and 3-point percentages prior to the 
game, game time when shot is taken, and the player guarding the shooter are used to predict the 
defender’s proximity.  This propensity score seeks to capture information relating to how “tight” a 
shooter may be played both by modeling their shooting history, the team they play for (and thus 
play-calling/style of play), and the player defending the shot.  The benefit of creating the propensity 
score via a generalized additive mixed model is that random effects (modeling the variance at the 
shooter-level) as well as non-linearities can be effectively incorporated.  Nonlinearities in 
continuous predictors for the propensity score (game time when shot is taken, player’s 2-point 
percentage, and player’s 3-point percentage) were modeled with thin plate splines and 30 
dimensions of the basis.  The validity of the generalized additive mixed model was verified by 
examining the histogram of residuals (to assess normality) and plotting the residuals vs predicted 
values (to assess constant variance). 
 
Most classical propensity score methodologies employ a logistic or binary outcome model, creating 
a model-predicted probability between 0 and 1 that is directly interpretable as a propensity score 
weight.(Westreich et al. 2010; Wyss et al. 2014)  The most common approach to continuous 
treatment propensity scores is through the use of stability weights.  Continuous case propensity 
scores are stabilized with a numerator other than 1 because unstabilized scores will have infinite 
variance.  In the multilevel continuous treatment case, the stabilizing numerator is created either 
through a cluster-level Gaussian density or a marginal Gaussian density.(Schuler et al. 2016) 
 
After the propensity score is stabilized, covariate balance is checked.(Austin 2019)  Covariate 
balance is assessed to verify that each unit/shot is balanced across the treatments (i.e. defender 
proximity) and provide a level of evidence that assignment of this treatment could have been 
random.  For continuous treatments, the propensity score weights are assessed by examining the 
correlation between the baseline covariate and the treatment, the rationale being that the baseline 
covariate should be statistically independent from the treatment and a threshold of 0.1 has been 
shown in simulations to result in minimal confounding.(Zhu et al. 2015) After reviewing the 
balance statistics for both the cluster-stabilized and margin-stabilized propensity scores, it was 
determined that the margin-stabilized propensity scores produced the best and most effective 
balancing of baseline covariates across treatments (defender proximities).  The balance statistics 
for the margin-stabilized propensity score weights can be seen in Figure 1, presented in a so-called 
‘Love Plot’ format. 
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Figure 1. Margin Stabilized Propensity Score Love Plot  
The baseline covariates are listed on the y-axis and the x-axis is the correlation between Defender 
Proximity and the covariate.  The Unadjusted line (blue) is the correlation between the Defender 
Proximity and the covariate prior to adjustment with the propensity score and the Adjusted line 
(pink) is after application of the propensity score.  The dashed line at 0.10 is the threshold for 
covariate balance, which is met after propensity score weighting.  The Average Correlations are 
shown for the Opposing Defender, Home Team Name and Shooter’s Team Name both for display 
readability and to maintain anonymity compliance per ShotTracker agreements, but all Adjusted 
individual correlations were below 0.1.   

 
 
2.3.2. Final Model & Analysis 
The formal analysis for causal inference was then made with a player-nested logistic regression for 
shot make/miss as dependent variable.  The shot’s distance from hoop center, defender proximity 
to shooter and the interaction effect of those data points served as independent variables.  The 
observations were weighted with stabilized propensity scores, and robust sandwich estimates for 
standard error calculations.(Lumley and Scott 2017)  Multicollinearity was checked to insure that 
the Variable Inflation Factors were not greater than 5. 

2.3.3. Analytical Software and Open Code 
All analyses and API calls were made using the R programming language.(R Core Team 2022)  In 
addition to base R, the following add-on packages were leveraged for data retrieval, management, 
analysis and/or visualization:  httr,(Wickham 2022a) httr2,(Wickham 2022b) jsonlite,(Ooms 2014) 
glue,(Hester and Bryan 2022) data.table,(Dowle and Srinivasan 2022) lubridate,(Grolemund and 
Wickham 2011) plyr,(Wickham 2011) dplyr,(Wickham et al. 2022) stringr,(Wickham 2022c) 
purr,(Henry and Wickham 2022) ggplot2,(Wickham 2010) tidyr,(Wickham and Girlich 2022) 



 6 

rlist,(Ren 2021) tibble,(Muller and Wickham 2022) mgcv,(Wood 2011) gratia,(Simpson 2022) 
WeighIt,(Greifer 2022a) cobalt,(Greifer 2022b) survey,(Lumley 2010) interactions,(Long 2019) and 
RColorBrewer.(Neuwirth 2022)  All code and pseudodata for the final causal inference analysis is 
available at the author’s GitHub site:  https://github.com/TenanATC/SSAC_2023 
 
 

3. Results 
There was a significant interaction effect (p = 0.002), indicating that defender proximity to shot 
causes a lower likelihood of making a basket and that the proximity of the defender has stronger 
causal effects as shot distance decreases.  Figure 2 shows the Average Treatment Effect of defender 
proximity on shot probabilities for different shot distances.   

The Average Treatment Effect is the difference in outcomes between units (shots) assigned to 
different treatments (proximities to defender).  This analytically demonstrates the causal effect of 
how close a defender is to a shooter and how this impacts the likelihood of making the shot; 
furthermore, we demonstrate that this causal effect is differential, more profound, and non-linear 
as shots are taken closer to the basket.  Unsurprisingly, a wide-open shot taken close to the hoop 
has a high likelihood of success, but this likelihood can be substantially decreased even by a 
defender being 5 feet away. 

Figure 2. Causal Interaction Analysis 
The Average Treatment Effect of Defender Proximity (in feet, x-axis) on probability of making a shot 
(y-axis).  This effect is examined at various distances a shot may be taken from the hoop. 
 

https://github.com/TenanATC/SSAC_2023
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3.1. Causal Analysis in Basketball 
The causal inference work in the current manuscript is unlikely to surprise coaches, players or 
front-office personnel.  Of course, more closely guarded shots are less successful and it seems 
natural that the highest probability shots closest to the hoop are made far less likely if a “rim 
defender” or shot-blocker is nearby.  However, to our knowledge, this is the first analytical report 
detailing out the causal nature of this relationship.  This type of work would not have been possible 
without some sort of continuous player tracking information, which has only recently become 
widely available in basketball.  Furthermore, while the Potential Outcomes framework has existed 
in some form since the 1970’s,(Rubin 1974) only recently have methods been devised and validated 
which can handle complex study designs necessary to handle most applications in sport.  The 
current analysis leverages multilevel models in both the propensity score calculation and the final 
Causal Inference model, and nonlinear penalized splines are leveraged in the design of the 
propensity score.  While both of those statistical tools have been around since the 
1990’s,(Raudenbush 1988; Hastie 1990) only in the last two decades have they become widely 
used, analytically feasible with a personal computer, and taught in graduate school curriculums.  
Therefore, we may be at the start of a critical phase for causal inference in sport where there is 
technical data available, widely validated statistical methods, and personnel educated to employ 
these methods. 
 



 8 

Future analytical work with player tracking data could answer causal inference questions that have 
a greater impact, for example: 

• Does a zone defense cause there to be lower quality shots? 
• Does instantaneous player acceleration with the ball cause more fouls? 
• Does player height cause them to get more rebounds (or does wingspan, jump height, etc.)? 

 
However, even more interesting causal inference questions can be answered when combining 
multiple data sources such as player tracking, demographics, nutrition, sports medicine, strength & 
conditioning, and sport psychology.  For example: 

• Does using a nutritional supplement cause increases in late-game defensive or offensive 
performance? 

• Does prophylactic ankle taping/bracing cause a decrease in ankle injuries? 
• Does prophylactic ankle taping/bracing cause a decrease in angle injuries as a function of 

decreasing player acceleration? 
• Does pre-game hydration cause a decrease in cramping during games? 
• Does pre-game hydration cause an increase in late-game performance? 
• Does visuo-motor training cause an increase in in-game reaction time to passes (i.e. 

decreased ‘bobbles’) 
 
None of the above questions are necessarily challenging given the right data sources and Causal 
Inference methods, whether the analyst is employing propensity scores, directed acyclic graphs, 
regression discontinuity, or difference-in-differences.  The key is having both the “right data” and 
the “right people” who can deploy these analytic techniques and explain them with all applicable 
caveats and assumptions to appropriate stakeholders. 
 
 
 

4. Conclusion 
Automated, high-resolution tracking of players in games, combined with modern statistical 
methods for Causal Inference, facilitate causal conclusions about game play in basketball.  This 
current analysis places a causal and numerical framework around what is logically known; 
however, future analyses using player tracking and Causal Inference can explore more 
controversial topics on basketball strategy or performance.  While much focus has recently been on 
prediction modeling in sport, Causal Inference is likely to have a higher return-on-investment when 
it comes to enhancing athlete and team performance. 
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