
github.com/drmbeledogu/RobustDFS 1

Robust Daily Fantasy Sports: Maximizing Reward via the
Robust Optimization Paradigm

Dubem Mbeledogu

1. Introduction

Fantasy sports are games where participants get to play as the owner/manager of a sports team. As
the manager, the participant gets to assemble a virtual version of a sports team composed of
proxies of real players. A player’s statistical performance in real life games or matches is used to
calculate the number of fantasy points that are generated for the fantasy team. The sum of all the
fantasy points generated by all the selected players on the team is the total team score. The total
team score is compared against the team scores of other participants and those with the highest
scores are the winners. For daily fantasy football, the player assembly process is done by
“purchasing” players that each have a cost. Typically, the better the player, the more they cost, and
that value is set by the operator of the fantasy sports league (DraftKings, FanDuel, etc.). There is a
limited budget for the participant acting as the manager so the decision on which players can be
drafted is constrained.

If a participant would like to “win” at daily fantasy football by scoring more fantasy points than
other participants, it seems that there are two parts of the problem to engage. The first would be to
accurately estimate the number of fantasy points each player will score. If a participant knows the
number of fantasy points a player will score, they are at an advantage to select the players that will
score more than the ones selected by other participants. There is plenty of work in this space,
however the focus of this work is on the second part of the problem. The second part of the
problem is to determine the best possible team given the number of fantasy points a participant
thinks each player will score and the budget constraint the participant faces. There is a simple
mixed integer linear programming (MILP) formulation of this problem that is common amongst
online optimizers. That formulation is:

 max
𝒙

𝒑𝑇𝒙 (1)

Subject to: ∑ 𝑥𝑖

𝑖∈𝒬ℬ

= 1 (2)

 ∑ 𝑥𝑖

𝑖∈𝒲ℛ

≥ 3 (3)

 ∑ 𝑥𝑖

𝑖∈ℛℬ

≥ 2 (4)

 ∑ 𝑥𝑖

𝑖∈𝒯ℰ

≥ 1 (5)

 ∑ 𝑥𝑖

𝑖∈𝒟𝒮𝒯

= 1 (6)

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 2

 ∑ 𝑥𝑖

𝑖∈𝒫

= 9 (7)

 𝒄𝑇𝒙 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡 (8)

Where:
𝒫, the set of all eligible players,
𝒬ℬ, 𝒲ℛ, ℛℬ, 𝒯ℰ, 𝒟𝒮𝒯 are the sets of all eligible quarterbacks, wide receivers, running backs, tight
ends, and defense/special teams

𝒑 ∈ ℝ|𝒫|, the vector of projected points each player will score

𝒄 ∈ ℝ+
|𝒫|

, the vector of costs for each player,

𝒙 ∈ {0,1}|𝒫|, the vector of selections for the lineup

Equation (1) maximizes the number of projected points the lineup will score. Equations (2) through
(7) ensure that the lineup is proper; for DraftKings that’s one QB, at least 3 wide receivers, 2
running backs, and 1 TE, one defense/special teams, and a flex player who is a WR, RB or TE.
Equation (8) is the budget constraint which is $50,000 for DraftKings. There are two issues with
this formulation. The first is that it may not be required to score the most points. There are some
game types where this is the case, one of which is 50/50, where the participants who score in the
top 50 percent receive 1.8x the money they put in and the bottom half loses their money. For this
game, all that is needed is to score enough points, which fundamentally changes lineup selection
strategy. The second issue is that estimates for fantasy points are not accurate. The projected points
R2 for the data used in this study is 0.62. The data was provided by DFSForecast.com [1] who’s won
the DraftKing’s Milly Maker competition several times, so the projections must be above average.
Given the competition type and the uncertainty around player performance, it is possible that a
lineup that will score fewer points on average will still receive a payout more often. Figure 1 details
that scenario where lineup 1 scores more points on average than lineup 2 however, the variance on
the projection errors of lineup 1 might be wide enough that lineup 2 is expected to win money more
often.

Figure 1

Expert heuristics for 50/50 address the issues with selecting the lineup that maximizes average
points and these heuristics produce a distribution like lineup 1. Ryan Chase from Daily Fantasy Café
says that the two most important overarching 50/50 themes are to “minimize risk” and “aim for

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 3

good, not great”. He says that “sacrificing a bit of ceiling when selecting one player over another is
advisable if your lower ceiling player carries a higher floor” [2]. This matches the idea of selecting a
lineup that has a lower variance, minimizing risk, even if that means the average points scored is
not as high.

The mathematical formulation of the ideas from Figure 1 and from the 50/50 expert heuristics is to
maximize the expected payout, which for 50/50 is to push as much of the point probability
distribution above the payout line as possible. There is an optimization paradigm, stochastic
programming, which directly solves this problem and excellent work has been done by Sarah
Newell at Kansas State University on the topic [3]. Stochastic programming addresses the true
problem but comes with its own disadvantages which include the difficulty in specifying the
expectation function. For example, in the prior mentioned work, a normal distribution is in part
specified by its standard deviation which cannot be calculated linearly. Extra specification must be
made to approximate the lineup standard deviation. Secondly, excellent work done by Haugh and
Singhal [4] directly addresses the idea of maximizing the probability of performing above a payout
line with direct application to the 50/50 competition. Their formulation, while very sophisticated, is
a binary quadratic problem that requires minutes of solve time on a high-performance computing
cluster for which the average DFS participant or even DFS professional may not have access to.
Given these difficulties, a simpler interpretation of this problem is to maximize the worst-case
scenario given the uncertainty around points scored. The paradigm of maximizing the worst-case
scenario is called Robust Optimization. The benefit of using robust optimization is the reduction in
assumptions made about the performance distribution as well as the tractability and
interpretability of the final solution. The rest of this work focuses on formulating the robust
problem for daily fantasy football.

2. Methodology

2.1 Introducing the Robust Constraint
Because the constraints enforced by equations (2)-(8) must hold true for any lineup, they will be
dropped for the remainder of the derivation as they remain untouched. As determined in the
introduction, the goal is to maximize the worst-case scenario of actual points scored. Actual points
can be thought of as the projected points a player might score plus some error on the model used to
project those points. The problem can then be formulated as:

 max
𝒙,𝜃

𝜃 (9)

Subject to: 𝜃 ≤ (𝒑 + 𝒆)𝑇𝒙 ∀𝒆 ∈ 𝒰 (10)

Where:
𝜃 ∈ ℝ, dummy scalar variable

𝒆 ∈ ℝ|𝒫|, the vector of errors between the projections and the actual player performance
𝒰, the uncertainty set. The possible set of errors that may occur

The right-hand side of the constraint in equation (10) looks like the objective in equation (1) except
now it includes the errors on the model. Rather than having the right-hand side of equation (10) be
the objective, it is shifted to the constraints by adding a “dummy” variable 𝜃, and by maximizing
over the dummy. Because the objective is to maximize the dummy variable and it is upper bounded

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 4

by the right-hand side of equation (10), this formulation is no different than if the right-hand side of
equation (10) were the objective. Now the constraint is made “robust” to the uncertainty in model
error by including the stipulation that the constraint must hold for all errors in the uncertainty set.
Because the constraint is an upper bound, if the dummy variable meets the constraint in the worst-
case error scenario, it will meet the constraint for any error scenario. This is how the “worst-case”
scenario is maximized. The robust constraint can then be rewritten:

 𝜃 ≤ (𝒑 + 𝒆)𝑇𝒙 ∀𝒆 ∈ 𝒰 (11)

 𝜃 ≤ min
𝒆∈𝒰

(𝒑 + 𝒆)𝑇𝒙 (12)

 𝜃 ≤ 𝒑𝑇𝒙 + min
𝒆∈𝒰

𝒆𝑇𝒙 (13)

The focus then becomes to solve the minimization problem inside the constraint. To do this, an
uncertainty set must be defined that will capture the worst-case error scenario without being too
conservative.

2.2 Defining the Uncertainty Set
Vector norms are common uncertainty sets due to their symmetry and tractable solution when
involved in the inner minimization problem. Vector norms are used for this problem and are
defined as:

‖𝒆‖𝑝 = (∑|𝑒𝑖|𝑝

𝑖

)

1/𝑝

 (14)

The uncertainty set using vector norms could then be defined as:

 ‖𝒆‖𝑝 ≤ 𝜌 (15)

Where:
𝑝 ∈ [1, ∞), the uncertainty set shape
𝜌 ∈ ℝ+, the uncertainty set size

When 𝑝 is 1, the set is called a polygon set; when 𝑝 is 2, it is called a ball set; when 𝑝 approaches
infinity, it is called a box set. The shaded regions of figure 2 show the area that is covered by p-norm
uncertainty sets. The figures show that this definition for the uncertainty set implies that the errors
are symmetrically distributed around 0. This is true for most models for which the errors are
typically normally distributed around 0 with some variance or 𝑒~𝒩(0, 𝜎𝑒

2). This holds true for the
model predictions supplied by DFSforecast.com as shown in appendix A. This definition of
uncertainty set also implies that that the errors are not correlated which does not hold true. One
could reason that if a quarterback performs better than predicted, most likely a receiver will
perform better than predicted. See figure 3 which shows WR vs. QB error for the dataset used in
this study with the uncertainty region overlaid. For the box set, the corners in the second and fourth
quadrants have almost no points in them. For the polygonal set, the top and bottom corners have
almost no points in them. Due to the correlation, these standard p-norm sets will include regions
where there are no errors, giving an estimate for the worst-case scenario that is too conservative.
The vector norm needs to be adjusted to account for the correlation.

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 5

Figure 2: Uncertainty set shapes (polygon-left, ball-middle, box-right)

Figure 3: WR vs QB error with uncertainty sets (box-left, polygon-right)

2.2.1 Data Whitening
There is a technique used to incorporate correlation in uncertainty sets. The technique is borrowed
from data whitening and is used in other robust uncertainty set definitions by the likes of Yuan, Li
and Huang [5]. Data whitening is the process of transforming correlated data with unequal
variances into uncorrelated data with equal, unit variances. Data whitening applies to this problem
as the output of the vector norm is uncorrelated with equal variances but the input, in this case the
error vector, is correlated with unequal variances.

The whitening matrix (𝑾 ∈ ℝ𝑛𝑥𝑛) is one such that when multiplied by some arbitrary data matrix
(𝑴 ∈ ℝ𝑛𝑥𝑚) with n features and m observations, the resulting matrix (𝒀 ∈ ℝ𝑛𝑥𝑚) yields an identity
(𝑰 ∈ ℝ𝑛𝑥𝑛) covariance matrix. Then for a centered dataset (mean of each feature is 0) the
covariance can be estimated as:

𝚺𝑴 =

𝑴𝑴𝑇

𝑚
 (16)

It follows that:

 𝒀 = 𝑾𝑴 (17)

𝚺𝒀 =

𝒀𝒀𝑇

𝑚
=

(𝑾𝑴)(𝑾𝑴)𝑇

𝑚
=

𝑾𝑴𝑴𝑇𝑾𝑇

𝑚
= 𝑾𝚺𝑴𝑾𝑇 = 𝑰 (18)

 𝑾𝑇𝑾 = 𝚺𝑴
−1 (19)

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 6

There are many whitening matrices that can make the equality in equation (19) true. It’s clear that
the Cholesky decomposition of the inverse covariance matrix of 𝑴 works. The inverse square root
of the covariance matrix of 𝑴 works as well and it will be used for the rest of this problem. For this

problem, the whitening matrix is 𝚺𝒆
−1/2

or the inverse square root of the error covariance matrix.

The new uncertainty set is now defined:

‖𝚺𝒆

−1/2
𝒆‖

𝑝
≤ 𝜌 (20)

This definition will shift the uncertainty set to account for the correlations of the errors. Figure 4
below contains WR vs QB error with the new uncertainty sets overlaid in green. The regions in the
second and fourth quadrants with low point density have reduced area when correlations are
accounted for. For the polygon uncertainty set, the edges in the second and fourth quadrants are
pulled in towards the origin. For the box uncertainty set, the corners in the second and fourth
quadrants are pulled in towards the origin.

Figure 4: WR vs QB error with uncertainty sets (polygon-left, box-right, no correlation-blue, w/correlation-green)

2.2.2 Initially Generating the Covariance Matrix
It appears that the covariance matrix can be estimated directly using equation (16) which is
implemented in many computing packages like NumPy. The issue is that every player may not play
in every game. There may be some missing errors. To remedy this, players who miss more than
20% of games are removed from the set of players that will be evaluated. Even after this, some
players may still miss a game. If equation (16) is to be used, every week or row where at least one
player didn’t play must be removed. Because players may miss different games, very few datapoints
may remain and the estimate of the covariance matrix will be weak. See figure 5.

To reduce the loss in data, pairwise covariances are calculated. For players that do not play in the
same game, it’s assumed that they do not affect each other and their covariances are set to 0. For

Figure 5: Error data frame reduction from missing data

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 7

players on the same team, their pairwise covariances are calculated normally. Errors for players on
opposing teams are correlated for the data provided by DFSForecast.com as shown in Appendix B.
To capture this, the covariance between a player and the opposing positions over the previous
weeks were calculated. For the week a lineup is to be optimized, the pairwise covariance for
opposing players is the minimum of the magnitude of the covariances between their positions. For
example, if Aaron Rodgers is playing the Chicago Bears in week 13, an error covariance is calculated
between Aaron Rodgers and opposing defenses from the previous 12 weeks and an error
covariance is calculated between the Bears defense and opposing QB’s from the previous 12 weeks.
The final pairwise covariance used for Aaron Rodgers/Bears defense is the minimum of the
magnitude between the two. This method was chosen because these covariances are the least sure
estimates so their effect on the solution should be minimized.

2.2.3 Nearest Correlation Matrix
Nick Higham, Richardson Professor of Applied Mathematics at the University of Manchester, states
that “symmetric positive definiteness is arguably one of the highest mathematical accolades to
which a matrix can aspire” [6]. This special quality of being positive semi-definite (PSD) is required
of a matrix to take its square root and return real values. The square root of the covariance matrix
must return real values for this problem so it must also be PSD. Covariance matrices generated
using equation (16) are PSD by definition but, because the covariance matrix generated by the
previous section was done pairwise, it may not actually be PSD. The generated covariance matrix
must be forced to be PSD to continue with the analysis. The goal is then to manipulate the values of
the covariance matrix as minimally as possible such that it becomes PSD. To do this, rather than
generating a covariance matrix, initially pairwise correlations are calculated, and the nearest
possible correlation matrix is found. Nearest_correlation.py developed by Mike Croucher [7] was
used for this task which implements Nick Higham’s nearest correlation algorithm [8]. The algorithm
works by using Dykstra’s alternating projections algorithm for projecting a point onto the
intersection of two convex sets. In the case of the nearest correlation problem, that is the
projection, in the Frobenius norm, of the initial, pairwise correlation matrix onto the intersection of
the set of symmetric PSD matrices and the set of symmetric matrices with diagonal 1. The nearest
correlation is defined in equations (21) & (22).

 min
𝑹𝒆

‖𝑿 − 𝑹𝒆‖𝐹 (21)

Subject to: 𝑹𝒆 ∈ 𝒮 ∩ 𝒱 (22)

Where:
𝑿, the initial, pairwise correlation matrix of the errors
𝑹𝒆, the nearest correlation matrix of the errors to be calculated
𝒮, the set of all symmetric PSD matrices
𝒱, the set of all symmetric matrices with diagonal 1

The resulting nearest correlation matrix is then converted back to a covariance matrix by using the
error standard deviation for each player:

 𝑫𝒆 = 𝑑𝑖𝑎𝑔([𝜎𝑒1, 𝜎𝑒2, ⋯ , 𝜎𝑒|𝒫|]) (23)

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 8

 𝚺𝒆 = 𝑫𝒆𝑹𝒆𝑫𝒆 (24)

Where:
𝜎𝑒𝑖

 is the standard deviation of the errors for player 𝑖

This method was chosen rather than directly finding the nearest covariance matrix because the
variances are the surest values in the matrix that are being estimated. It is preferred to fix the
variances and slightly alter the covariances which are already minimized to subdue their impact.
The final algorithm to generate the covariance matrix to be used in the uncertainty set definition is:

Algorithm 1 Final Covariance Matrix generation for Week W

1: Initialize player/player error correlation matrix 𝑹𝒆 of eligible players as identity matrix 𝐼

2: Initialize player error standard deviation matrix 𝑫𝒆 of eligible players with zeros

3: Initialize player/opposing position error correlation matrix 𝑸𝒆 with zeros

4: for each player 𝑖 in 1 to |𝒫|

5: 𝐷𝑒𝑖𝑖
← 𝜎𝑒𝑖

 #Calculate player error standard deviations

6: for each position j in 1 to |Positions|

7: 𝑄𝑒𝑖𝑗
← 𝑞𝑒𝑖𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗

 #Calculate player 𝑖 /opposing position 𝑗 error correlation

8: end for

9: end for

10: for player 𝑖 in 1 to |𝒫|

11: for player 𝑗 in 𝑖 + 1 to |𝒫|

12: if player 𝑗 is on the same team as player 𝑖

13: 𝑅𝑒𝑖𝑗
, 𝑅𝑒𝑗𝑖

← 𝑟𝑒𝑖𝑒𝑗
 #Player correlation

14: end if

15: if player 𝑗 is on the opposing team to player 𝑖 for week W

16: if 𝑎𝑏𝑠 (𝑞𝑒𝑖𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗
) < 𝑎𝑏𝑠 (𝑞𝑒𝑗𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

)

17: 𝑅𝑒𝑖𝑗
, 𝑅𝑒𝑗𝑖

← 𝑞𝑒𝑖𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗
 #Opposing position correlation

18: else

19: 𝑅𝑒𝑖𝑗
, 𝑅𝑒𝑗𝑖

← 𝑞𝑒𝑗𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖
 #Opposing position correlation

20: end if

21: end if

22: end for

23: end for

24: 𝑹𝒆 ← 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑹𝒆)

25: 𝚺𝒆 ← 𝑫𝒆𝑹𝒆𝑫𝒆

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 9

2.3 Inner minimization solution
Focus is returned to the inner minimization problem from equation (13). The inner minimization
problem for which will now be called the primal problem, is now formulated as a conic
programming problem:

 min
𝒆

𝒙𝑇𝒆 (25)

Subject to: (𝒆, 𝜌) ∈ 𝒦 = {(𝒆, 𝜌) | ‖𝚺 𝒆
−1/2

𝒆‖
𝑝

≤ 𝜌} (26)

The conic constraint is replaced with a dual constraint and Lagrangian variables 𝒔 ∈ ℝ|𝑃| and 𝑡 ∈ ℝ
are added resulting in:

 ℒ(𝒆, 𝒔, 𝑡) = 𝒙𝑇𝒆 − 𝒔T𝚺𝒆
−1/2

𝒆 − 𝑡𝜌 (27)

Subject to: (𝒔, 𝑡) ∈ 𝒦∗ = {(𝒔, 𝑡) | ‖𝒔‖𝑞 ≤ 𝑡} 𝑤ℎ𝑒𝑟𝑒
1

𝑝
+

1

𝑞
= 1 (28)

The Lagrangian is first minimized over the errors then maximized over the dual variables. If strong
duality holds (which it does here), the objective of the final maximization problem, which will now
be called the dual problem, will be equal to the objective of the primal problem. Because the dual
problem is a lower bound to the primal problem and the case of interest is when they are equal,
only the case where a finite objective is obtained is considered.

𝑔(𝒔, 𝑡) = min

𝒆
ℒ(𝒆, 𝒔, 𝑡) = min

𝒆
[(𝒙𝑇 − 𝒔T𝚺𝒆

−1/2
) 𝒆 − 𝑡𝜌] = {−𝑡𝜌 𝒙 = 𝚺𝒆

−1/2
𝒔

−∞ 𝑜𝑡𝑤
 (29)

Because only the finite case is considered, the problem becomes:

 max
𝒔,𝑡

𝑔(𝒔, 𝑡) = max
𝒔,𝑡

−𝑡𝜌 (30)

Subject to: 𝒙 = 𝚺𝒆
−1/2

𝒔 (31)

 ‖𝒔‖𝑞 ≤ 𝑡 (32)

To maximize the objective function, the smallest value for 𝑡 must be selected and since 𝑡 is lower
bounded by ‖𝒔‖𝑞, it can be replaced by ‖𝒔‖𝑞 in the objective. Then 𝒔 is constrained by equality so it

can be replaced with 𝚺𝒆
1/2

𝒙. The dual problem simplifies to:

 max
𝒔,𝑡

−𝑡𝜌 = max
𝒔,𝑡

−𝜌‖𝒔‖𝑞 (33)

Subject to: 𝒔 = 𝚺𝒆
1/2

𝒙 (34)

 ⟹ max
𝒔,𝑡

−𝜌 ‖𝚺𝒆
1/2

𝒙‖
𝑞

= −𝜌 ‖𝚺𝒆
1/2

𝒙‖
𝑞

 (35)

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 10

The solution to the dual problem (right-hand side of equation (35)), can now replace the primal
problem (minimization term in equation (13)) in the initial robust constraint. The dummy variable
can be removed, and the right-hand side of the constraint can be shifted back to the objective
function. The objective function looks like MILP but now there is an extra term subtracted. This can
be thought of as the “safety factor” from the effect of the errors. The higher the variance of the
errors, the bigger the penalty of the worst-case scenario.

 𝜃 ≤ 𝒑𝑇𝒙 − 𝜌 ‖𝚺𝒆
1/2

𝒙‖
𝑞

 (36)

 max
𝒙

𝒑𝑇𝒙 − 𝜌 ‖𝚺𝒆
1/2

𝒙‖
𝑞

 (37)

For proper choice of uncertainty set shape, equation (37) can be formulated as a MILP, retaining its
tractability compared to equation (1). For a box uncertainty set (𝑞 = 1), the objective becomes:

max
𝒙

𝒑𝑇𝒙 − 𝜌 ∑ |(𝚺𝒆
1/2

𝒙)
𝑖
|

|𝒫|

𝑖=1

 (38)

Which can then be linearly formulated as:

max
𝒙,𝒛

𝒑𝑇𝒙 − 𝜌 ∑ 𝑧𝑖

|𝒫|

𝑖=1

 (39)

Subject to: −𝒛 ≤ 𝚺𝒆
1/2

𝒙 ≤ 𝒛 (40)

Where:

𝒛 ∈ ℝ|𝒫|

For a polygonal uncertainty set (𝑞 = ∞), the objective becomes:

 max
𝒙

{𝒑𝑇𝒙 − 𝜌 max
1≤𝑖≤|𝒫|

|(𝚺𝒆
1/2

𝒙)
𝑖
|} (41)

Which can then be linearly formulated as:

 max
𝒙,𝑧

𝒑𝑇𝒙 − 𝜌𝑧 (42)

Subject to: 𝑧 ≥ (𝚺𝒆
1/2

𝒙)
𝑖
 ∀𝑖 𝑖𝑛 1 𝑡𝑜 |𝒫| (43)

 𝑧 ≥ − (𝚺𝒆
1/2

𝒙)
𝑖
 ∀𝑖 𝑖𝑛 1 𝑡𝑜 |𝒫| (44)

Where:
𝑧 ∈ ℝ

This formulation is not only advantageous because of the tractability of the problem and simplicity
of interpretation, but also because it’s completely model dependent. The uncertainty that is being

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 11

accounted for is on the errors in the predictive model that generates the projections. This solution
can be tailor-made for any predictive model.

3 Results
A simulation of 10,000 outcomes was run for the 2021-2022 season for which DFSforecast.com
provided projections. The “true” error covariance matrix for all players was calculated using all 18
weeks of data and algorithm 1. It was assumed that the errors are distributed according to a
multivariate normal 𝒆~𝒩(0, 𝚺𝒆−𝑡𝑟𝑢𝑒). Then both the standard MILP and the robust formulation
were used to select lineups for weeks 10-18, starting from week 10 so that there is adequate data to
estimate the error covariance matrix for the robust formulation. It should be noted that the robust
formulation could be used on earlier weeks if errors from the previous season are available. Since
projections were only provided for the 2021-2022 season, the earlier games in the season could not
be run. Some players such as rookies for the current season or players who switched teams will not
have representative data from the previous season. To start the season, rookies would take on the
average variance for their position and 0 covariance with other players. For players who switched
teams, it may be useful to use their variance from the previous season and their player-position
covariances from the previous season as proxies for the current player-player covariances.

The goal of this formulation is to maximize the worst-case scenario, so the 1 percentile outcome of
actual points scored from the simulations was recorded in tables 1 and 2. Performance for this set
of projections was also compared against empirical payout lines of DraftKings competitions from
the 2021 season, collected from fantasycruncher.com [9]. There are tens of 50/50 competitions,
usually with 100 competitors each, that happen every week and the average payout line from the
performances each week were used as the payout line for this study. The box uncertainty set
probability distribution was used for the probability of payout in table 3. The simulations were run
in jupyter notebooks using Gurobi as the solver on an Intel core i7 10th gen processor. The
optimizations took fractions of a second to solve.

Table 1: Robust Optimization simulation results using polygon uncertainty set

Polygon

Week
Mean 1%

𝝆
MILP Robust Change %Change MILP Robust Change %Change

10 151.3 151.3 0.0 0.0% 100.3 100.3 0.0 0.0% NA

11 151 145.3 -5.7 -3.8% 97.3 97.9 0.6 0.6% 2

12 139.1 137.8 -1.3 -0.9% 89.2 89.3 0.1 0.1% 2

13 153.8 141.8 -12 -7.8% 100.8 104 3.2 3.2% 5

14 146.3 140.1 -6.2 -4.2% 89.1 96 6.9 7.7% 5

15 143.2 136.3 -6.9 -4.8% 85.4 91.1 5.7 6.7% 5

16 148.5 141.8 -6.7 -4.5% 97.6 109 11.4 11.7% 5

17 144.5 144.5 0.0 0.0% 101.1 101.1 0.0 0.0% NA

18 140.2 138.3 -1.9 -1.4% 86.3 90.9 4.6 5.3% 2

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 12

Table 2: Robust Optimization simulation results using box uncertainty set

Box

Week
Mean 1%

𝝆
MILP Robust Change %Change MILP Robust Change %Change

10 151.3 151.3 0.0 0.0% 100.3 100.3 0.0 0.0% NA

11 151 151 0.0 0.0% 97.3 97.3 0.0 0.0% NA

12 139.1 130.5 -8.6 -6.2% 89.2 91.1 1.9 2.1% 0.25

13 153.8 145 -8.8 -5.7% 100.8 104.6 3.8 3.8% 0.25

14 146.3 144.1 -2.2 -1.5% 89.1 100.9 11.8 13.2% 0.1

15 143.2 137.3 -5.9 -4.1% 85.4 89.4 4 4.7% 0.35

16 148.5 143.6 -4.9 -3.3% 97.6 109.6 12 12.3% 0.35

17 144.5 137 -7.5 -5.2% 101.1 105.7 4.6 4.5% 0.25

18 140.2 138.8 -1.4 -1.0% 86.3 91.6 5.3 6.1% 0.1

Table 3: Box performance against empirical payout lines

Week Payout Line
MILP – Probability

of payout
Robust – Probability

of payout

12 98.78 97% 97%

13 173.75 19% 5%

14 128.34 77% 80%

15 123.52 79% 75%

16 133.46 75% 77%

17 134.39 71% 58%

18 120.79 80% 81%

For weeks 10/17 in the polygon uncertainty set and weeks 10/11 for the box uncertainty set, there
was no increase in the 1% actual points outcome. This would be interpreted as the lineup that
scores the most points on average also has the maximum worst-case scenario. This can happen
depending on the model used to generate the projections. There are several weeks where the
worst-case scenario increased so much so that the robust lineup would’ve been preferred
empirically over the MILP, those being weeks 14, 16, and 18. Figure 6 shows the distributions of
points scored between MILP and robust for the box uncertainty set for weeks 14 and 16.

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 13

Figure 6: Weeks 14 and 16 lineup comparisons. MILP in blue, Robust with box uncertainty in orange

The robust formulation will prefer players who score highly on average but who also have less
variance on the errors of their past projections as they’re less likely to have bad outcomes. This
formulation also favors pairs of players with negative covariances. The negative covariances reduce
the overall variance of the lineup. Appendix C & D show the lineup covariance matrices. An example
of the robust lineup preferences at play is the choice of Tom Brady over Dak Prescott in week 16.
The selection comes from the negative covariance between Tom Brady and running back, Ronald
Jones. For this specific model, when Tom Brady performs worse than expected, Ronald Jones tends
to perform better than expected which provides a hedge against the two players performing under
expectation at the same time. Dak Prescot was projected to score 22.14 points that week while Tom
Brady was projected to score only 20.79 points at a more expensive cost, however this formulation
has decided to accept that difference for the gain in worst-case outcome. This formulation provides
optimal decision making for tradeoffs like this.

Lastly, it seems that across almost all weeks, the box uncertainty set improves the 1% outcome
better than the polygon uncertainty set. This most likely comes from the polygon uncertainty set
having a worst-case scenario that is too conservative; it accounts for scenarios that do not occur.
Referring to figure 4, the corners of the polygon uncertainty set, even after accounting for
correlated errors, still have lower point density. The box uncertainty sets naturally fits to the
correlated errors as its corners are oriented in the direction of the correlation while the polygon’s
flat edges are oriented in the direction of the correlation. This general phenomenon most likely
extends to higher dimensional space.

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 14

4 Discussion

4.1 Considerations
This formulation is not without its flaws. There is an underlying assumption that the predictive
model being used to project the points has greater than 50% of its probability density above the
payout line when using the basic MILP to generate lineups. In other words, the predictive model
needs to be good enough that the MILP generated lineups have a positive expected value on the
earnings. If that’s not the case, the robust formulation will shift more probability density to a lower
number of points, exacerbating the low expected value issue. In this scenario, it may be interesting
to favor higher variance in the errors rather than punish it. This will widen the probability
distribution and shift more probability density to a higher number of points. A simple change can
be made to equation (37) to accomplish this:

 max
𝒙

𝒑𝑇𝒙 + 𝜌 ‖𝚺𝒆
1/2

𝒙‖
𝑞

 (45)

Although equation (45) isn’t rigorously derived nor does it simplify as easily to something like
equations (39) or (42), it can be interpreted similarly to equation (37). The “safety” term is now
additive and can be thought of as a “surprise” term. This will favor players who not only are
projected to score highly, but also have a higher variance in their errors and have a higher
covariance with teammates and opposing positions. This logic is already standard to most daily
fantasy football experts who purport that one should “stack” QB’s and WR’s. Stack means to select
QB’s and WR’s from the same team for your lineup.

There is a secondary assumption being made which is that the payout line for a game like 50/50 is
independent of lineup performance. This may not be true. A scenario could happen where there are
only two lineups to select from. One that has the “MILP” distribution and one that has the “robust”
distribution. 50% of participants could select the robust lineup while the remainder select the MILP
distribution. Since there are only two outcomes, MILP or robust, the payout line becomes the result
of the robust performance. The probability that the robust lineup receives a payout is simply the
probability that the robust lineup produces more points than the MILP lineup. If it is assumed that
the player errors are normally distributed, then the lineup performances are normally distributed
and the difference between the lineup performances will be normally distributed as well with mean
of 𝜇𝑅𝑜𝑏𝑢𝑠𝑡 − 𝜇𝑀𝐼𝐿𝑃 and variance 𝜎𝑅𝑜𝑏𝑢𝑠𝑡

2 + 𝜎𝑀𝐼𝐿𝑃
2 − 2𝜎𝑀𝐼𝐿𝑃−𝑅𝑜𝑏𝑢𝑠𝑡. The probability that the difference

is greater than 0 will be less than 50% because the mean is less than 0 and the distribution is
symmetrical. Under this scenario, it never makes sense to select the robust lineup no matter how
much the worst-case scenario is improved. It seems to be a fair assumption that the payout line
doesn’t swing much with differences in the robust lineup performance because there tend to be
many lineups that are very different. Pro Football Focus projects ownership percentages, which are
the percent of total lineups including player X. For week 10 of the 2022 season, Pro Football Focus
projects that ~170 players will be used across lineups, the vast majority of which have 10% usage
or less [10]. In other words, there are many different lineups and there are few players being
shared across those lineups. There seems to be enough unique lineups that a large swing in robust
lineup performance probably won’t also swing the payout line.

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 15

Figure 7: Histogram of player usage for week 10 of the 2022 season projected by Pro Football Focus

It should be noted that this formulation given its benefits and flaws should be used in conjunction
with MILP and domain knowledge. It is an extra tool to simply and tractably understand the
tradeoffs of risk and reward in the 50/50 competition.

4.2 Next Steps
The uncertainty sets defined in this work are tractable and fit well for the problem, however they
are not the only uncertainty sets. There is an uncertainty set definition for robust discrete
optimization proposed by Bertsimas and Sim [11] that defines the worst-case scenario as the worst
subset of selections that could be made. In the case of daily fantasy football, this would be the
subset of the selected lineup that when underperforming, impacts the lineup most negatively. The
problem would be formulated as:

max
𝒙

{𝒑𝑇𝒙 + min
{𝒵|𝒵⊆𝒫,|𝒵|≤Γ}

∑ 𝑒𝑗𝑥𝑗

𝑗∈𝒵

} (46)

Where:
𝒵, the subset of the players 𝒫
Γ, the number of players allowed to deviate from their projected performance

The first term in the objective of equation (46) is the same as the objective in equation (1). The
second term defines the most negative impact of realizing the errors of a subset of the lineup. This
formulation is fundamentally different than the one used for this work and could be useful as it
doesn’t assume that the worst case is happening for all players at the same time.

5 Conclusion
Depending on the daily fantasy football game type, it may not be the best strategy to select a lineup
that maximizes the average point total. It is always the goal to maximize expected payout however,
it’s not always tractable to solve this problem. This work uses the robust optimization paradigm to
maximize the worst-case scenario which may be advantageous for game types like 50/50. Robust
optimization is interpretable, tractable and, under the formulation presented by this work,
adaptable to any model used to generate projections. For the projections provided, the robust
scenario selected lineups that increased the worst-case scenario so much so that it would have been
the preferred lineup over standard MILP. The work will be continued by experimenting with other

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 16

uncertainty sets. Furthermore, the work will be continued in other sports like basketball that have
more games so that empirical performance of this formulation can be measured.

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 17

References

[1] DFSForecast. [Online]. Available: https://dfsforecast.com/

[2] R. Chase, ‘Head-to-Head and 50/50 Strategies’, Daily Fantasy Café,

https://www.dailyfantasycafe.com/academy/graduate/head-to-head-50-50-strategy

[3] S. Newell, ‘Optimizing daily fantasy sports contests through stochastic integer

programming’, Dept. Industrial and Manufacturing Systems Engineering, MS thesis, Kansas
State University, Manhattan, KS, 2017

[4] M. B. Haugh & S. Singal, ‘How to Play Strategically in Fantasy Sports (and Win)’, 2018.

[5] Y. Yuan, Z. Li, & B. Huang, ‘Robust optimization under correlated uncertainty: Formulations

and computational study’, Computers & Chemical Engineering, vol. 85, pp. 58–71, 2016.

[6] N. J. Higham, ‘Computing a nearest symmetric positive semidefinite matrix’, Linear Algebra

and its Applications, vol. 103, pp. 103–118, 1988.

[7] M. Croucher, nearest_correlation, GitHub repository,

https://github.com/mikecroucher/nearest_correlation, 2014

[8] N. J. Higham, ‘Computing the nearest correlation matrix—a problem from finance’, IMA

Journal of Numerical Analysis, vol. 22, no. 3, pp. 329–343, July 2002.

[9] Fantasy Cruncher. [Online]. Available: https://www.fantasycruncher.com/contest-links/NFL/

[10] Pro Football Focus. [Online]. Available: https://www.pff.com/dfs/ownership/

[11] D. Bertsimas & M. Sim, ‘Robust discrete optimization and network flows’, Mathematical

Programming, vol. 98, pp. 49–71, September 2003.

https://github.com/drmbeledogu/RobustDFS
https://github.com/mikecroucher/nearest_correlation

github.com/drmbeledogu/RobustDFS 18

Appendix A: Error Distributions

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 19

Appendix B: Positional Correlations

Same Team QB WR RB TE DST

QB 1 0.27 0.07 0.26 -0.1

WR 0.27 1 -0.01 0 -0.05

RB 0.07 -0.01 1 0 0.02

TE 0.26 0 0 1 -0.1

DST -0.1 -0.05 0.02 -0.1 1

Opposing Team QB WR RB TE DST

QB 0.22 0.09 0.07 0.1 -0.35

WR 0.09 0.04 0.01 0.06 -0.12

RB 0.07 0.01 0 0.05 -0.16

TE 0.1 0.06 0.05 0.02 -0.1

DST -0.35 -0.12 0.02 -0.1 -0.31

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 20

Appendix C: Week 14 Covariance Matrices

MILP
Sony

Michel
Jared
Cook

Justin
Herbert

Mike
Williams

Seahawks
Antonio
Gibson

Diontae
Johnson

Josh
Jacobs

Brandin
Cooks

Sony
Michel

27.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Jared
Cook

0.0 24.2 -8.8 -27.3 0.0 0.0 0.0 0.0 0.0

Justin
Herbert

0.0 -8.8 114.3 87.1 0.0 0.0 0.0 0.0 0.0

Mike
Williams

0.0 -27.3 87.1 165.5 0.0 0.0 0.0 0.0 0.0

Seahawks 0.0 0.0 0.0 0.0 9.9 0.0 0.0 0.0 -6.4

Antonio
Gibson

0.0 0.0 0.0 0.0 0.0 50.5 0.0 0.0 0.0

Diontae
Johnson

0.0 0.0 0.0 0.0 0.0 0.0 36.8 0.0 0.0

Josh
Jacobs

0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.8 0.0

Brandin
Cooks

0.0 0.0 0.0 0.0 -6.4 0.0 0.0 0.0 58.8

Poly
Sony

Michel
Jared
Cook

Ezekiel
Elliott

Seahawks
Antonio
Gibson

Taylor
Heinicke

Chase
Claypool

Diontae
Johnson

Hunter
Renfrow

Sony
Michel

27.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Jared
Cook

0.0 24.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ezekiel
Elliott

0.0 0.0 65.0 0.0 -9.9 -7.7 0.0 0.0 0.0

Seahawks 0.0 0.0 0.0 9.9 0.0 0.0 0.0 0.0 0.0

Antonio
Gibson

0.0 0.0 -9.9 0.0 50.5 -15.4 0.0 0.0 0.0

Taylor
Heinicke

0.0 0.0 -7.7 0.0 -15.4 44.8 0.0 0.0 0.0

Chase
Claypool

0.0 0.0 0.0 0.0 0.0 0.0 40.4 -5.2 0.0

Diontae
Johnson

0.0 0.0 0.0 0.0 0.0 0.0 -5.2 36.8 0.0

Hunter
Renfrow

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 61.5

Box
Cooper
Kupp

Sony
Michel

Van
Jefferson

Jared
Cook

Mike
Williams

Seahawks
Antonio
Gibson

Taylor
Heinicke

Javonte
Williams

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 21

Cooper
Kupp

82.9 -6.2 -21.3 0.0 0.0 0.0 0.0 0.0 0.0

Sony
Michel

-6.2 27.9 -19.1 0.0 0.0 0.0 0.0 0.0 0.0

Van
Jefferson

-21.3 -19.1 35.1 0.0 0.0 0.0 0.0 0.0 0.0

Jared
Cook

0.0 0.0 0.0 24.2 -27.3 0.0 0.0 0.0 0.0

Mike
Williams

0.0 0.0 0.0 -27.3 165.5 0.0 0.0 0.0 0.0

Seahawks 0.0 0.0 0.0 0.0 0.0 9.9 0.0 0.0 0.0

Antonio
Gibson

0.0 0.0 0.0 0.0 0.0 0.0 50.5 -15.4 0.0

Taylor
Heinicke

0.0 0.0 0.0 0.0 0.0 0.0 -15.4 44.8 0.0

Javonte
Williams

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.0

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 22

Appendix D: Week 16 Covariance Matrices

MILP
Cooper
Kupp

Jared
Cook

Josh
Palmer

Keenan
Allen

Dak
Prescott

Jonathan
Taylor

Ronald
Jones

Bengals
Braxton
Berrios

Cooper
Kupp

84.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Jared
Cook

0.0 20.9 -4.4 -5.5 0.0 0.0 0.0 0.0 0.0

Josh
Palmer

0.0 -4.4 11.5 -2.5 0.0 0.0 0.0 0.0 0.0

Keenan
Allen

0.0 -5.5 -2.5 21.6 0.0 0.0 0.0 0.0 0.0

Dak
Prescott

0.0 0.0 0.0 0.0 139.8 0.0 0.0 0.0 0.0

Jonathan
Taylor

0.0 0.0 0.0 0.0 0.0 136.2 0.0 0.0 0.0

Ronald
Jones

0.0 0.0 0.0 0.0 0.0 0.0 17.1 0.0 0.0

Bengals 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.2 0.0

Braxton
Berrios

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.8

Poly
Cooper
Kupp

Van
Jefferson

Jared
Cook

Josh
Palmer

Keenan
Allen

Ronald
Jones

Alexander
Mattison

Kirk
Cousins

Bengals

Cooper
Kupp

84.8 -22.1 0.0 0.0 0.0 0.0 -10.6 -12.2 0.0

Van
Jefferson

-22.1 32.2 0.0 0.0 0.0 0.0 -6.6 7.4 0.0

Jared
Cook

0.0 0.0 20.9 -4.4 -5.5 0.0 0.0 0.0 0.0

Josh
Palmer

0.0 0.0 -4.4 11.5 -2.5 0.0 0.0 0.0 0.0

Keenan
Allen

0.0 0.0 -5.5 -2.5 21.6 0.0 0.0 0.0 0.0

Ronald
Jones

0.0 0.0 0.0 0.0 0.0 17.1 0.0 0.0 0.0

Alexander
Mattison

-10.6 -6.6 0.0 0.0 0.0 0.0 24.2 -7.5 0.0

Kirk
Cousins

-12.2 7.4 0.0 0.0 0.0 0.0 -7.5 48.3 0.0

Bengals 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.2

https://github.com/drmbeledogu/RobustDFS

github.com/drmbeledogu/RobustDFS 23

Box
Cooper
Kupp

Jared
Cook

Josh
Palmer

Keenan
Allen

Ronald
Jones

Tom
Brady

Alexander
Mattison

Braxton
Berrios

Jets

Cooper
Kupp

84.8 0.0 0.0 0.0 0.0 0.0 -10.6 0.0 0.0

Jared
Cook

0.0 20.9 -4.4 -5.5 0.0 0.0 0.0 0.0 0.0

Josh
Palmer

0.0 -4.4 11.5 -2.5 0.0 0.0 0.0 0.0 0.0

Keenan
Allen

0.0 -5.5 -2.5 21.6 0.0 0.0 0.0 0.0 0.0

Ronald
Jones

0.0 0.0 0.0 0.0 17.1 -27.1 0.0 0.0 0.0

Tom
Brady

0.0 0.0 0.0 0.0 -27.1 94.4 0.0 0.0 0.0

Alexander
Mattison

-10.6 0.0 0.0 0.0 0.0 0.0 24.2 0.0 0.0

Braxton
Berrios

0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.8 -0.7

Jets 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.7 15.4

https://github.com/drmbeledogu/RobustDFS

