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Robust Daily Fantasy Sports: Maximizing Reward via the 
Robust Optimization Paradigm 

Dubem Mbeledogu 
 

1. Introduction 
 
Fantasy sports are games where participants get to play as the owner/manager of a sports team. As 
the manager, the participant gets to assemble a virtual version of a sports team composed of 
proxies of real players. A player’s statistical performance in real life games or matches is used to 
calculate the number of fantasy points that are generated for the fantasy team. The sum of all the 
fantasy points generated by all the selected players on the team is the total team score. The total 
team score is compared against the team scores of other participants and those with the highest 
scores are the winners.  For daily fantasy football, the player assembly process is done by 
“purchasing” players that each have a cost. Typically, the better the player, the more they cost, and 
that value is set by the operator of the fantasy sports league (DraftKings, FanDuel, etc.). There is a 
limited budget for the participant acting as the manager so the decision on which players can be 
drafted is constrained.  

If a participant would like to “win” at daily fantasy football by scoring more fantasy points than 
other participants, it seems that there are two parts of the problem to engage. The first would be to 
accurately estimate the number of fantasy points each player will score. If a participant knows the 
number of fantasy points a player will score, they are at an advantage to select the players that will 
score more than the ones selected by other participants. There is plenty of work in this space, 
however the focus of this work is on the second part of the problem. The second part of the 
problem is to determine the best possible team given the number of fantasy points a participant 
thinks each player will score and the budget constraint the participant faces. There is a simple 
mixed integer linear programming (MILP) formulation of this problem that is common amongst 
online optimizers. That formulation is: 

 max
𝒙

𝒑𝑇𝒙 (1) 

Subject to: ∑ 𝑥𝑖

𝑖∈𝒬ℬ

= 1 (2) 

 ∑ 𝑥𝑖

𝑖∈𝒲ℛ

≥ 3 (3) 

 ∑ 𝑥𝑖

𝑖∈ℛℬ

≥ 2 (4) 

 ∑ 𝑥𝑖

𝑖∈𝒯ℰ

≥ 1 (5) 

 ∑ 𝑥𝑖

𝑖∈𝒟𝒮𝒯

= 1 (6) 
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 ∑ 𝑥𝑖

𝑖∈𝒫

= 9 (7) 

 𝒄𝑇𝒙 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡 (8) 

Where:  
𝒫, the set of all eligible players, 
𝒬ℬ, 𝒲ℛ, ℛℬ, 𝒯ℰ, 𝒟𝒮𝒯 are the sets of all eligible quarterbacks, wide receivers, running backs, tight 
ends, and defense/special teams 

𝒑 ∈ ℝ|𝒫|, the vector of projected points each player will score 

𝒄 ∈ ℝ+
|𝒫|

, the vector of costs for each player, 

𝒙 ∈ {0,1}|𝒫|, the vector of selections for the lineup 

Equation (1) maximizes the number of projected points the lineup will score. Equations (2) through 
(7) ensure that the lineup is proper; for DraftKings that’s one QB, at least 3 wide receivers, 2 
running backs, and 1 TE, one defense/special teams, and a flex player who is a WR, RB or TE. 
Equation (8) is the budget constraint which is $50,000 for DraftKings. There are two issues with 
this formulation. The first is that it may not be required to score the most points. There are some 
game types where this is the case, one of which is 50/50, where the participants who score in the 
top 50 percent receive 1.8x the money they put in and the bottom half loses their money. For this 
game, all that is needed is to score enough points, which fundamentally changes lineup selection 
strategy. The second issue is that estimates for fantasy points are not accurate. The projected points 
R2 for the data used in this study is 0.62. The data was provided by DFSForecast.com [1] who’s won 
the DraftKing’s Milly Maker competition several times, so the projections must be above average.  
Given the competition type and the uncertainty around player performance, it is possible that a 
lineup that will score fewer points on average will still receive a payout more often. Figure 1 details 
that scenario where lineup 1 scores more points on average than lineup 2 however, the variance on 
the projection errors of lineup 1 might be wide enough that lineup 2 is expected to win money more 
often.  

 

Figure 1 

Expert heuristics for 50/50 address the issues with selecting the lineup that maximizes average 
points and these heuristics produce a distribution like lineup 1. Ryan Chase from Daily Fantasy Café 
says that the two most important overarching 50/50 themes are to “minimize risk” and “aim for 

https://github.com/drmbeledogu/RobustDFS


github.com/drmbeledogu/RobustDFS 3 

good, not great”. He says that “sacrificing a bit of ceiling when selecting one player over another is 
advisable if your lower ceiling player carries a higher floor” [2]. This matches the idea of selecting a 
lineup that has a lower variance, minimizing risk, even if that means the average points scored is 
not as high.  

The mathematical formulation of the ideas from Figure 1 and from the 50/50 expert heuristics is to 
maximize the expected payout, which for 50/50 is to push as much of the point probability 
distribution above the payout line as possible. There is an optimization paradigm, stochastic 
programming, which directly solves this problem and excellent work has been done by Sarah 
Newell at Kansas State University on the topic [3]. Stochastic programming addresses the true 
problem but comes with its own disadvantages which include the difficulty in specifying the 
expectation function. For example, in the prior mentioned work, a normal distribution is in part 
specified by its standard deviation which cannot be calculated linearly. Extra specification must be 
made to approximate the lineup standard deviation.  Secondly, excellent work done by Haugh and 
Singhal [4] directly addresses the idea of maximizing the probability of performing above a payout 
line with direct application to the 50/50 competition. Their formulation, while very sophisticated, is 
a binary quadratic problem that requires minutes of solve time on a high-performance computing 
cluster for which the average DFS participant or even DFS professional may not have access to. 
Given these difficulties, a simpler interpretation of this problem is to maximize the worst-case 
scenario given the uncertainty around points scored. The paradigm of maximizing the worst-case 
scenario is called Robust Optimization. The benefit of using robust optimization is the reduction in 
assumptions made about the performance distribution as well as the tractability and 
interpretability of the final solution. The rest of this work focuses on formulating the robust 
problem for daily fantasy football. 

2. Methodology 
 
2.1 Introducing the Robust Constraint 
Because the constraints enforced by equations (2)-(8) must hold true for any lineup, they will be 
dropped for the remainder of the derivation as they remain untouched. As determined in the 
introduction, the goal is to maximize the worst-case scenario of actual points scored. Actual points 
can be thought of as the projected points a player might score plus some error on the model used to 
project those points. The problem can then be formulated as: 

 max
𝒙,𝜃

𝜃 (9) 

Subject to: 𝜃 ≤ (𝒑 + 𝒆)𝑇𝒙     ∀𝒆 ∈ 𝒰 (10) 

Where:  
𝜃 ∈ ℝ, dummy scalar variable  

𝒆 ∈ ℝ|𝒫|, the vector of errors between the projections and the actual player performance 
𝒰, the uncertainty set. The possible set of errors that may occur 

The right-hand side of the constraint in equation (10) looks like the objective in equation (1) except 
now it includes the errors on the model. Rather than having the right-hand side of equation (10) be 
the objective, it is shifted to the constraints by adding a “dummy” variable 𝜃, and by maximizing 
over the dummy. Because the objective is to maximize the dummy variable and it is upper bounded 
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by the right-hand side of equation (10), this formulation is no different than if the right-hand side of 
equation (10) were the objective. Now the constraint is made “robust” to the uncertainty in model 
error by including the stipulation that the constraint must hold for all errors in the uncertainty set. 
Because the constraint is an upper bound, if the dummy variable meets the constraint in the worst-
case error scenario, it will meet the constraint for any error scenario. This is how the “worst-case” 
scenario is maximized. The robust constraint can then be rewritten: 

 𝜃 ≤ (𝒑 + 𝒆)𝑇𝒙     ∀𝒆 ∈ 𝒰 (11) 

 𝜃 ≤ min
𝒆∈𝒰

(𝒑 + 𝒆)𝑇𝒙 (12) 

 𝜃 ≤ 𝒑𝑇𝒙 + min
𝒆∈𝒰

𝒆𝑇𝒙 (13) 

The focus then becomes to solve the minimization problem inside the constraint. To do this, an 
uncertainty set must be defined that will capture the worst-case error scenario without being too 
conservative.  

2.2 Defining the Uncertainty Set 
Vector norms are common uncertainty sets due to their symmetry and tractable solution when 
involved in the inner minimization problem. Vector norms are used for this problem and are 
defined as: 

 
‖𝒆‖𝑝 = (∑|𝑒𝑖|𝑝

𝑖

)

1/𝑝

 (14) 

The uncertainty set using vector norms could then be defined as: 

 ‖𝒆‖𝑝 ≤ 𝜌 (15) 

Where: 
𝑝 ∈ [1, ∞), the uncertainty set shape 
𝜌 ∈ ℝ+, the uncertainty set size 

When 𝑝 is 1, the set is called a polygon set; when 𝑝 is 2, it is called a ball set; when 𝑝 approaches 
infinity, it is called a box set. The shaded regions of figure 2 show the area that is covered by p-norm 
uncertainty sets. The figures show that this definition for the uncertainty set implies that the errors 
are symmetrically distributed around 0. This is true for most models for which the errors are 
typically normally distributed around 0 with some variance or 𝑒~𝒩(0, 𝜎𝑒

2). This holds true for the 
model predictions supplied by DFSforecast.com as shown in appendix A. This definition of 
uncertainty set also implies that that the errors are not correlated which does not hold true. One 
could reason that if a quarterback performs better than predicted, most likely a receiver will 
perform better than predicted. See figure 3 which shows WR vs. QB error for the dataset used in 
this study with the uncertainty region overlaid. For the box set, the corners in the second and fourth 
quadrants have almost no points in them. For the polygonal set, the top and bottom corners have 
almost no points in them. Due to the correlation, these standard p-norm sets will include regions 
where there are no errors, giving an estimate for the worst-case scenario that is too conservative. 
The vector norm needs to be adjusted to account for the correlation. 
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Figure 2: Uncertainty set shapes (polygon-left, ball-middle, box-right) 

 

Figure 3: WR vs QB error with uncertainty sets (box-left, polygon-right) 

2.2.1 Data Whitening 
There is a technique used to incorporate correlation in uncertainty sets. The technique is borrowed 
from data whitening and is used in other robust uncertainty set definitions by the likes of Yuan, Li 
and Huang [5]. Data whitening is the process of transforming correlated data with unequal 
variances into uncorrelated data with equal, unit variances. Data whitening applies to this problem 
as the output of the vector norm is uncorrelated with equal variances but the input, in this case the 
error vector, is correlated with unequal variances.  

The whitening matrix (𝑾 ∈ ℝ𝑛𝑥𝑛) is one such that when multiplied by some arbitrary data matrix 
(𝑴 ∈ ℝ𝑛𝑥𝑚) with n features and m observations, the resulting matrix (𝒀 ∈ ℝ𝑛𝑥𝑚) yields an identity 
(𝑰 ∈ ℝ𝑛𝑥𝑛) covariance matrix. Then for a centered dataset (mean of each feature is 0) the 
covariance can be estimated as: 

 
𝚺𝑴 =

𝑴𝑴𝑇

𝑚
 (16) 

It follows that: 

 𝒀 = 𝑾𝑴 (17) 

 
𝚺𝒀 =

𝒀𝒀𝑇

𝑚
=

(𝑾𝑴)(𝑾𝑴)𝑇

𝑚
=

𝑾𝑴𝑴𝑇𝑾𝑇

𝑚
= 𝑾𝚺𝑴𝑾𝑇 = 𝑰 (18) 

 𝑾𝑇𝑾 = 𝚺𝑴
−1 (19) 

https://github.com/drmbeledogu/RobustDFS


github.com/drmbeledogu/RobustDFS 6 

There are many whitening matrices that can make the equality in equation (19) true. It’s clear that 
the Cholesky decomposition of the inverse covariance matrix of 𝑴 works. The inverse square root 
of the covariance matrix of 𝑴 works as well and it will be used for the rest of this problem. For this 

problem, the whitening matrix is 𝚺𝒆
−1/2

or the inverse square root of the error covariance matrix.  

The new uncertainty set is now defined: 

 
‖𝚺𝒆

−1/2
𝒆‖

𝑝
≤ 𝜌 (20) 

This definition will shift the uncertainty set to account for the correlations of the errors. Figure 4 
below contains WR vs QB error with the new uncertainty sets overlaid in green. The regions in the 
second and fourth quadrants with low point density have reduced area when correlations are 
accounted for. For the polygon uncertainty set, the edges in the second and fourth quadrants are 
pulled in towards the origin. For the box uncertainty set, the corners in the second and fourth 
quadrants are pulled in towards the origin. 

 

Figure 4: WR vs QB error with uncertainty sets (polygon-left, box-right, no correlation-blue, w/correlation-green)  

2.2.2 Initially Generating the Covariance Matrix 
It appears that the covariance matrix can be estimated directly using equation (16) which is 
implemented in many computing packages like NumPy. The issue is that every player may not play 
in every game. There may be some missing errors. To remedy this, players who miss more than 
20% of games are removed from the set of players that will be evaluated. Even after this, some 
players may still miss a game. If equation (16) is to be used, every week or row where at least one 
player didn’t play must be removed. Because players may miss different games, very few datapoints 
may remain and the estimate of the covariance matrix will be weak. See figure 5. 

 

To reduce the loss in data, pairwise covariances are calculated. For players that do not play in the 
same game, it’s assumed that they do not affect each other and their covariances are set to 0. For 

Figure 5: Error data frame reduction from missing data 
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players on the same team, their pairwise covariances are calculated normally. Errors for players on 
opposing teams are correlated for the data provided by DFSForecast.com as shown in Appendix B. 
To capture this, the covariance between a player and the opposing positions over the previous 
weeks were calculated. For the week a lineup is to be optimized, the pairwise covariance for 
opposing players is the minimum of the magnitude of the covariances between their positions. For 
example, if Aaron Rodgers is playing the Chicago Bears in week 13, an error covariance is calculated 
between Aaron Rodgers and opposing defenses from the previous 12 weeks and an error 
covariance is calculated between the Bears defense and opposing QB’s from the previous 12 weeks. 
The final pairwise covariance used for Aaron Rodgers/Bears defense is the minimum of the 
magnitude between the two. This method was chosen because these covariances are the least sure 
estimates so their effect on the solution should be minimized.  

2.2.3 Nearest Correlation Matrix 
Nick Higham, Richardson Professor of Applied Mathematics at the University of Manchester, states 
that “symmetric positive definiteness is arguably one of the highest mathematical accolades to 
which a matrix can aspire” [6]. This special quality of being positive semi-definite (PSD) is required 
of a matrix to take its square root and return real values. The square root of the covariance matrix 
must return real values for this problem so it must also be PSD. Covariance matrices generated 
using equation (16) are PSD by definition but, because the covariance matrix generated by the 
previous section was done pairwise, it may not actually be PSD. The generated covariance matrix 
must be forced to be PSD to continue with the analysis. The goal is then to manipulate the values of 
the covariance matrix as minimally as possible such that it becomes PSD. To do this, rather than 
generating a covariance matrix, initially pairwise correlations are calculated, and the nearest 
possible correlation matrix is found. Nearest_correlation.py developed by Mike Croucher [7] was 
used for this task which implements Nick Higham’s nearest correlation algorithm [8]. The algorithm 
works by using Dykstra’s alternating projections algorithm for projecting a point onto the 
intersection of two convex sets. In the case of the nearest correlation problem, that is the 
projection, in the Frobenius norm, of the initial, pairwise correlation matrix onto the intersection of 
the set of symmetric PSD matrices and the set of symmetric matrices with diagonal 1. The nearest 
correlation is defined in equations (21) & (22). 

 

 min
𝑹𝒆

‖𝑿 − 𝑹𝒆‖𝐹 (21) 

Subject to: 𝑹𝒆 ∈ 𝒮 ∩ 𝒱 (22) 

Where: 
𝑿, the initial, pairwise correlation matrix of the errors 
𝑹𝒆, the nearest correlation matrix of the errors to be calculated 
𝒮, the set of all symmetric PSD matrices  
𝒱, the set of all symmetric matrices with diagonal 1  

The resulting nearest correlation matrix is then converted back to a covariance matrix by using the 
error standard deviation for each player: 

 𝑫𝒆 = 𝑑𝑖𝑎𝑔([𝜎𝑒1, 𝜎𝑒2, ⋯ , 𝜎𝑒|𝒫|]) (23) 
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 𝚺𝒆 = 𝑫𝒆𝑹𝒆𝑫𝒆 (24) 

Where: 
𝜎𝑒𝑖

 is the standard deviation of the errors for player 𝑖 

This method was chosen rather than directly finding the nearest covariance matrix because the 
variances are the surest values in the matrix that are being estimated. It is preferred to fix the 
variances and slightly alter the covariances which are already minimized to subdue their impact. 
The final algorithm to generate the covariance matrix to be used in the uncertainty set definition is: 

Algorithm 1 Final Covariance Matrix generation for Week W 

1: Initialize player/player error correlation matrix 𝑹𝒆 of eligible players as identity matrix 𝐼 

2: Initialize player error standard deviation matrix 𝑫𝒆 of eligible players with zeros 

3: Initialize player/opposing position error correlation matrix 𝑸𝒆 with zeros 

4: for each player 𝑖 in 1 to |𝒫| 

5: 𝐷𝑒𝑖𝑖
← 𝜎𝑒𝑖

 #Calculate player error standard deviations 

6: for each position j in 1 to |Positions|  

7: 𝑄𝑒𝑖𝑗
← 𝑞𝑒𝑖𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗 

 #Calculate player 𝑖 /opposing position 𝑗 error correlation  

8: end for 

9: end for 

10: for player 𝑖 in 1 to |𝒫| 

11: for player 𝑗 in 𝑖 + 1 to |𝒫|  

12: if player 𝑗 is on the same team as player 𝑖 

13: 𝑅𝑒𝑖𝑗
, 𝑅𝑒𝑗𝑖

← 𝑟𝑒𝑖𝑒𝑗 
 #Player correlation 

14: end if 

15: if player 𝑗 is on the opposing team to player 𝑖 for week W 

16:       if  𝑎𝑏𝑠 (𝑞𝑒𝑖𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗
) <  𝑎𝑏𝑠 (𝑞𝑒𝑗𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 

) 

17:      𝑅𝑒𝑖𝑗
, 𝑅𝑒𝑗𝑖

← 𝑞𝑒𝑖𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗
 #Opposing position correlation 

18: else 

19:      𝑅𝑒𝑖𝑗
, 𝑅𝑒𝑗𝑖

← 𝑞𝑒𝑗𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 
 #Opposing position correlation 

20: end if 

21: end if 

22: end for 

23: end for 

24: 𝑹𝒆 ← 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑹𝒆) 

25: 𝚺𝒆 ← 𝑫𝒆𝑹𝒆𝑫𝒆 
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2.3 Inner minimization solution 
Focus is returned to the inner minimization problem from equation (13). The inner minimization 
problem for which will now be called the primal problem, is now formulated as a conic 
programming problem: 

 min
𝒆

𝒙𝑇𝒆 (25) 

Subject to: (𝒆, 𝜌) ∈ 𝒦 = {(𝒆, 𝜌) | ‖𝚺 𝒆
−1/2

𝒆‖
𝑝

≤ 𝜌} (26) 

 

The conic constraint is replaced with a dual constraint and Lagrangian variables 𝒔 ∈ ℝ|𝑃| and 𝑡 ∈ ℝ 
are added resulting in: 

 ℒ(𝒆, 𝒔, 𝑡) = 𝒙𝑇𝒆 − 𝒔T𝚺𝒆
−1/2

𝒆 − 𝑡𝜌 (27) 

Subject to: (𝒔, 𝑡) ∈ 𝒦∗ = {(𝒔, 𝑡) | ‖𝒔‖𝑞 ≤ 𝑡} 𝑤ℎ𝑒𝑟𝑒  
1

𝑝
+

1

𝑞
= 1 (28) 

The Lagrangian is first minimized over the errors then maximized over the dual variables. If strong 
duality holds (which it does here), the objective of the final maximization problem, which will now 
be called the dual problem, will be equal to the objective of the primal problem. Because the dual 
problem is a lower bound to the primal problem and the case of interest is when they are equal, 
only the case where a finite objective is obtained is considered.  

 
𝑔(𝒔, 𝑡) = min

𝒆
ℒ(𝒆, 𝒔, 𝑡) = min

𝒆
[(𝒙𝑇 − 𝒔T𝚺𝒆

−1/2
) 𝒆 − 𝑡𝜌] = {−𝑡𝜌 𝒙 = 𝚺𝒆

−1/2
𝒔

−∞       𝑜𝑡𝑤      
 (29) 

Because only the finite case is considered, the problem becomes: 

 max
𝒔,𝑡

𝑔(𝒔, 𝑡) = max
𝒔,𝑡

−𝑡𝜌 (30) 

Subject to: 𝒙 = 𝚺𝒆
−1/2

𝒔 (31) 

 ‖𝒔‖𝑞 ≤ 𝑡 (32) 

To maximize the objective function, the smallest value for 𝑡 must be selected and since 𝑡 is lower 
bounded by ‖𝒔‖𝑞, it can be replaced by ‖𝒔‖𝑞 in the objective. Then 𝒔 is constrained by equality so it 

can be replaced with 𝚺𝒆
1/2

𝒙. The dual problem simplifies to: 

 max
𝒔,𝑡

−𝑡𝜌 = max
𝒔,𝑡

−𝜌‖𝒔‖𝑞 (33) 

Subject to: 𝒔 = 𝚺𝒆
1/2

𝒙 (34) 

 ⟹ max
𝒔,𝑡

−𝜌 ‖𝚺𝒆
1/2

𝒙‖
𝑞

= −𝜌 ‖𝚺𝒆
1/2

𝒙‖
𝑞

 (35) 
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The solution to the dual problem (right-hand side of equation (35)), can now replace the primal 
problem (minimization term in equation (13)) in the initial robust constraint. The dummy variable 
can be removed, and the right-hand side of the constraint can be shifted back to the objective 
function. The objective function looks like MILP but now there is an extra term subtracted. This can 
be thought of as the “safety factor” from the effect of the errors. The higher the variance of the 
errors, the bigger the penalty of the worst-case scenario.  

 𝜃 ≤ 𝒑𝑇𝒙 − 𝜌 ‖𝚺𝒆
1/2

𝒙‖
𝑞

 (36) 

 max
𝒙

𝒑𝑇𝒙 − 𝜌 ‖𝚺𝒆
1/2

𝒙‖
𝑞

 (37) 

For proper choice of uncertainty set shape, equation (37) can be formulated as a MILP, retaining its 
tractability compared to equation (1). For a box uncertainty set (𝑞 = 1), the objective becomes: 

 

max
𝒙

𝒑𝑇𝒙 − 𝜌 ∑ |(𝚺𝒆
1/2

𝒙)
𝑖
|

|𝒫|

𝑖=1

 (38) 

Which can then be linearly formulated as: 

 

max
𝒙,𝒛

𝒑𝑇𝒙 − 𝜌 ∑ 𝑧𝑖

|𝒫|

𝑖=1

 (39) 

Subject to: −𝒛 ≤ 𝚺𝒆
1/2

𝒙 ≤ 𝒛 (40) 

Where: 

𝒛 ∈ ℝ|𝒫| 

For a polygonal uncertainty set (𝑞 = ∞), the objective becomes: 

 max
𝒙

{𝒑𝑇𝒙 − 𝜌 max
1≤𝑖≤|𝒫|

|(𝚺𝒆
1/2

𝒙)
𝑖
|} (41) 

Which can then be linearly formulated as: 

 max
𝒙,𝑧

𝒑𝑇𝒙 − 𝜌𝑧 (42) 

Subject to: 𝑧 ≥ (𝚺𝒆
1/2

𝒙)
𝑖
    ∀𝑖 𝑖𝑛 1 𝑡𝑜 |𝒫| (43) 

 𝑧 ≥ − (𝚺𝒆
1/2

𝒙)
𝑖
    ∀𝑖 𝑖𝑛 1 𝑡𝑜 |𝒫| (44) 

Where: 
𝑧 ∈ ℝ 

This formulation is not only advantageous because of the tractability of the problem and simplicity 
of interpretation, but also because it’s completely model dependent. The uncertainty that is being 
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accounted for is on the errors in the predictive model that generates the projections. This solution 
can be tailor-made for any predictive model. 

3 Results 
A simulation of 10,000 outcomes was run for the 2021-2022 season for which DFSforecast.com 
provided projections. The “true” error covariance matrix for all players was calculated using all 18 
weeks of data and algorithm 1. It was assumed that the errors are distributed according to a 
multivariate normal 𝒆~𝒩(0, 𝚺𝒆−𝑡𝑟𝑢𝑒). Then both the standard MILP and the robust formulation 
were used to select lineups for weeks 10-18, starting from week 10 so that there is adequate data to 
estimate the error covariance matrix for the robust formulation. It should be noted that the robust 
formulation could be used on earlier weeks if errors from the previous season are available. Since 
projections were only provided for the 2021-2022 season, the earlier games in the season could not 
be run. Some players such as rookies for the current season or players who switched teams will not 
have representative data from the previous season. To start the season, rookies would take on the 
average variance for their position and 0 covariance with other players. For players who switched 
teams, it may be useful to use their variance from the previous season and their player-position 
covariances from the previous season as proxies for the current player-player covariances.  

The goal of this formulation is to maximize the worst-case scenario, so the 1 percentile outcome of 
actual points scored from the simulations was recorded in tables 1 and 2. Performance for this set 
of projections was also compared against empirical payout lines of DraftKings competitions from 
the 2021 season, collected from fantasycruncher.com [9]. There are tens of 50/50 competitions, 
usually with 100 competitors each, that happen every week and the average payout line from the 
performances each week were used as the payout line for this study. The box uncertainty set 
probability distribution was used for the probability of payout in table 3. The simulations were run 
in jupyter notebooks using Gurobi as the solver on an Intel core i7 10th gen processor. The 
optimizations took fractions of a second to solve. 

Table 1: Robust Optimization simulation results using polygon uncertainty set 

Polygon 

Week 
Mean 1% 

𝝆 
MILP Robust Change %Change MILP Robust Change %Change 

10 151.3 151.3 0.0 0.0% 100.3 100.3 0.0 0.0% NA 

11 151 145.3 -5.7 -3.8% 97.3 97.9 0.6 0.6% 2 

12 139.1 137.8 -1.3 -0.9% 89.2 89.3 0.1 0.1% 2 

13 153.8 141.8 -12 -7.8% 100.8 104 3.2 3.2% 5 

14 146.3 140.1 -6.2 -4.2% 89.1 96 6.9 7.7% 5 

15 143.2 136.3 -6.9 -4.8% 85.4 91.1 5.7 6.7% 5 

16 148.5 141.8 -6.7 -4.5% 97.6 109 11.4 11.7% 5 

17 144.5 144.5 0.0 0.0% 101.1 101.1 0.0 0.0% NA 

18 140.2 138.3 -1.9 -1.4% 86.3 90.9 4.6 5.3% 2 
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Table 2: Robust Optimization simulation results using box uncertainty set 

Box 

Week 
Mean 1% 

𝝆 
MILP Robust Change %Change MILP Robust Change %Change 

10 151.3 151.3 0.0 0.0% 100.3 100.3 0.0 0.0% NA 

11 151 151 0.0 0.0% 97.3 97.3 0.0 0.0% NA 

12 139.1 130.5 -8.6 -6.2% 89.2 91.1 1.9 2.1% 0.25 

13 153.8 145 -8.8 -5.7% 100.8 104.6 3.8 3.8% 0.25 

14 146.3 144.1 -2.2 -1.5% 89.1 100.9 11.8 13.2% 0.1 

15 143.2 137.3 -5.9 -4.1% 85.4 89.4 4 4.7% 0.35 

16 148.5 143.6 -4.9 -3.3% 97.6 109.6 12 12.3% 0.35 

17 144.5 137 -7.5 -5.2% 101.1 105.7 4.6 4.5% 0.25 

18 140.2 138.8 -1.4 -1.0% 86.3 91.6 5.3 6.1% 0.1 
 

Table 3: Box performance against empirical payout lines 

Week Payout Line 
MILP – Probability 

of payout 
Robust – Probability 

of payout 

12 98.78 97% 97% 

13 173.75 19% 5% 

14 128.34 77% 80% 

15 123.52 79% 75% 

16 133.46 75% 77% 

17 134.39 71% 58% 

18 120.79 80% 81% 

For weeks 10/17 in the polygon uncertainty set and weeks 10/11 for the box uncertainty set, there 
was no increase in the 1% actual points outcome. This would be interpreted as the lineup that 
scores the most points on average also has the maximum worst-case scenario. This can happen 
depending on the model used to generate the projections. There are several weeks where the 
worst-case scenario increased so much so that the robust lineup would’ve been preferred 
empirically over the MILP, those being weeks 14, 16, and 18. Figure 6 shows the distributions of 
points scored between MILP and robust for the box uncertainty set for weeks 14 and 16.  
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Figure 6: Weeks 14 and 16 lineup comparisons. MILP in blue, Robust with box uncertainty in orange 

The robust formulation will prefer players who score highly on average but who also have less 
variance on the errors of their past projections as they’re less likely to have bad outcomes. This 
formulation also favors pairs of players with negative covariances. The negative covariances reduce 
the overall variance of the lineup. Appendix C & D show the lineup covariance matrices. An example 
of the robust lineup preferences at play is the choice of Tom Brady over Dak Prescott in week 16. 
The selection comes from the negative covariance between Tom Brady and running back, Ronald 
Jones. For this specific model, when Tom Brady performs worse than expected, Ronald Jones tends 
to perform better than expected which provides a hedge against the two players performing under 
expectation at the same time. Dak Prescot was projected to score 22.14 points that week while Tom 
Brady was projected to score only 20.79 points at a more expensive cost, however this formulation 
has decided to accept that difference for the gain in worst-case outcome. This formulation provides 
optimal decision making for tradeoffs like this. 

Lastly, it seems that across almost all weeks, the box uncertainty set improves the 1% outcome 
better than the polygon uncertainty set. This most likely comes from the polygon uncertainty set 
having a worst-case scenario that is too conservative; it accounts for scenarios that do not occur. 
Referring to figure 4, the corners of the polygon uncertainty set, even after accounting for 
correlated errors, still have lower point density. The box uncertainty sets naturally fits to the 
correlated errors as its corners are oriented in the direction of the correlation while the polygon’s 
flat edges are oriented in the direction of the correlation. This general phenomenon most likely 
extends to higher dimensional space. 
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4 Discussion 
 
4.1 Considerations 
This formulation is not without its flaws. There is an underlying assumption that the predictive 
model being used to project the points has greater than 50% of its probability density above the 
payout line when using the basic MILP to generate lineups. In other words, the predictive model 
needs to be good enough that the MILP generated lineups have a positive expected value on the 
earnings. If that’s not the case, the robust formulation will shift more probability density to a lower 
number of points, exacerbating the low expected value issue. In this scenario, it may be interesting 
to favor higher variance in the errors rather than punish it. This will widen the probability 
distribution and shift more probability density to a higher number of points. A simple change can 
be made to equation (37) to accomplish this: 

 max
𝒙

𝒑𝑇𝒙 + 𝜌 ‖𝚺𝒆
1/2

𝒙‖
𝑞

 (45) 

Although equation (45) isn’t rigorously derived nor does it simplify as easily to something like 
equations (39) or (42), it can be interpreted similarly to equation (37). The “safety” term is now 
additive and can be thought of as a “surprise” term. This will favor players who not only are 
projected to score highly, but also have a higher variance in their errors and have a higher 
covariance with teammates and opposing positions. This logic is already standard to most daily 
fantasy football experts who purport that one should “stack” QB’s and WR’s. Stack means to select 
QB’s and WR’s from the same team for your lineup.  
 
There is a secondary assumption being made which is that the payout line for a game like 50/50 is 
independent of lineup performance. This may not be true. A scenario could happen where there are 
only two lineups to select from. One that has the “MILP” distribution and one that has the “robust” 
distribution. 50% of participants could select the robust lineup while the remainder select the MILP 
distribution. Since there are only two outcomes, MILP or robust, the payout line becomes the result 
of the robust performance. The probability that the robust lineup receives a payout is simply the 
probability that the robust lineup produces more points than the MILP lineup. If it is assumed that 
the player errors are normally distributed, then the lineup performances are normally distributed 
and the difference between the lineup performances will be normally distributed as well with mean 
of 𝜇𝑅𝑜𝑏𝑢𝑠𝑡 − 𝜇𝑀𝐼𝐿𝑃 and variance 𝜎𝑅𝑜𝑏𝑢𝑠𝑡

2 + 𝜎𝑀𝐼𝐿𝑃
2 − 2𝜎𝑀𝐼𝐿𝑃−𝑅𝑜𝑏𝑢𝑠𝑡. The probability that the difference 

is greater than 0 will be less than 50% because the mean is less than 0 and the distribution is 
symmetrical. Under this scenario, it never makes sense to select the robust lineup no matter how 
much the worst-case scenario is improved. It seems to be a fair assumption that the payout line 
doesn’t swing much with differences in the robust lineup performance because there tend to be 
many lineups that are very different. Pro Football Focus projects ownership percentages, which are 
the percent of total lineups including player X. For week 10 of the 2022 season, Pro Football Focus 
projects that ~170 players will be used across lineups, the vast majority of which have 10% usage 
or less [10]. In other words, there are many different lineups and there are few players being 
shared across those lineups. There seems to be enough unique lineups that a large swing in robust 
lineup performance probably won’t also swing the payout line.  
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Figure 7: Histogram of player usage for week 10 of the 2022 season projected by Pro Football Focus 

It should be noted that this formulation given its benefits and flaws should be used in conjunction 
with MILP and domain knowledge. It is an extra tool to simply and tractably understand the 
tradeoffs of risk and reward in the 50/50 competition. 
 

4.2 Next Steps 
The uncertainty sets defined in this work are tractable and fit well for the problem, however they 
are not the only uncertainty sets. There is an uncertainty set definition for robust discrete 
optimization proposed by Bertsimas and Sim [11] that defines the worst-case scenario as the worst 
subset of selections that could be made. In the case of daily fantasy football, this would be the 
subset of the selected lineup that when underperforming, impacts the lineup most negatively. The 
problem would be formulated as: 

 

max
𝒙

{𝒑𝑇𝒙 + min
{𝒵|𝒵⊆𝒫,|𝒵|≤Γ}

∑ 𝑒𝑗𝑥𝑗

𝑗∈𝒵

} (46) 

Where: 
𝒵, the subset of the players 𝒫 
Γ, the number of players allowed to deviate from their projected performance 

The first term in the objective of equation (46) is the same as the objective in equation (1). The 
second term defines the most negative impact of realizing the errors of a subset of the lineup. This 
formulation is fundamentally different than the one used for this work and could be useful as it 
doesn’t assume that the worst case is happening for all players at the same time. 

5 Conclusion 
Depending on the daily fantasy football game type, it may not be the best strategy to select a lineup 
that maximizes the average point total. It is always the goal to maximize expected payout however, 
it’s not always tractable to solve this problem. This work uses the robust optimization paradigm to 
maximize the worst-case scenario which may be advantageous for game types like 50/50. Robust 
optimization is interpretable, tractable and, under the formulation presented by this work, 
adaptable to any model used to generate projections. For the projections provided, the robust 
scenario selected lineups that increased the worst-case scenario so much so that it would have been 
the preferred lineup over standard MILP. The work will be continued by experimenting with other 
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uncertainty sets. Furthermore, the work will be continued in other sports like basketball that have 
more games so that empirical performance of this formulation can be measured. 
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Appendix A: Error Distributions 
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Appendix B: Positional Correlations 
 

Same Team QB WR RB TE DST 

QB 1 0.27 0.07 0.26 -0.1 

WR 0.27 1 -0.01 0 -0.05 

RB 0.07 -0.01 1 0 0.02 

TE 0.26 0 0 1 -0.1 

DST -0.1 -0.05 0.02 -0.1 1 

 
Opposing Team QB WR RB TE DST 

QB 0.22 0.09 0.07 0.1 -0.35 

WR 0.09 0.04 0.01 0.06 -0.12 

RB 0.07 0.01 0 0.05 -0.16 

TE 0.1 0.06 0.05 0.02 -0.1 

DST -0.35 -0.12 0.02 -0.1 -0.31 
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Appendix C: Week 14 Covariance Matrices 
 

MILP 
Sony 

Michel 
Jared 
Cook 

Justin 
Herbert 

Mike 
Williams 

Seahawks 
Antonio 
Gibson 

Diontae 
Johnson 

Josh 
Jacobs 

Brandin 
Cooks 

Sony 
Michel 

27.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Jared 
Cook 

0.0 24.2 -8.8 -27.3 0.0 0.0 0.0 0.0 0.0 

Justin 
Herbert 

0.0 -8.8 114.3 87.1 0.0 0.0 0.0 0.0 0.0 

Mike 
Williams 

0.0 -27.3 87.1 165.5 0.0 0.0 0.0 0.0 0.0 

Seahawks 0.0 0.0 0.0 0.0 9.9 0.0 0.0 0.0 -6.4 

Antonio 
Gibson 

0.0 0.0 0.0 0.0 0.0 50.5 0.0 0.0 0.0 

Diontae 
Johnson 

0.0 0.0 0.0 0.0 0.0 0.0 36.8 0.0 0.0 

Josh 
Jacobs 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.8 0.0 

Brandin 
Cooks 

0.0 0.0 0.0 0.0 -6.4 0.0 0.0 0.0 58.8 

 

Poly 
Sony 

Michel 
Jared 
Cook 

Ezekiel 
Elliott 

Seahawks 
Antonio 
Gibson 

Taylor 
Heinicke 

Chase 
Claypool 

Diontae 
Johnson 

Hunter 
Renfrow 

Sony 
Michel 

27.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Jared 
Cook 

0.0 24.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ezekiel 
Elliott 

0.0 0.0 65.0 0.0 -9.9 -7.7 0.0 0.0 0.0 

Seahawks 0.0 0.0 0.0 9.9 0.0 0.0 0.0 0.0 0.0 

Antonio 
Gibson 

0.0 0.0 -9.9 0.0 50.5 -15.4 0.0 0.0 0.0 

Taylor 
Heinicke 

0.0 0.0 -7.7 0.0 -15.4 44.8 0.0 0.0 0.0 

Chase 
Claypool 

0.0 0.0 0.0 0.0 0.0 0.0 40.4 -5.2 0.0 

Diontae 
Johnson 

0.0 0.0 0.0 0.0 0.0 0.0 -5.2 36.8 0.0 

Hunter 
Renfrow 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 61.5 

 
 
 
 
 
 
 
 
 
 
 

Box 
Cooper 
Kupp 

Sony 
Michel 

Van 
Jefferson 

Jared 
Cook 

Mike 
Williams 

Seahawks 
Antonio 
Gibson 

Taylor 
Heinicke 

Javonte 
Williams 
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Cooper 
Kupp 

82.9 -6.2 -21.3 0.0 0.0 0.0 0.0 0.0 0.0 

Sony 
Michel 

-6.2 27.9 -19.1 0.0 0.0 0.0 0.0 0.0 0.0 

Van 
Jefferson 

-21.3 -19.1 35.1 0.0 0.0 0.0 0.0 0.0 0.0 

Jared 
Cook 

0.0 0.0 0.0 24.2 -27.3 0.0 0.0 0.0 0.0 

Mike 
Williams 

0.0 0.0 0.0 -27.3 165.5 0.0 0.0 0.0 0.0 

Seahawks 0.0 0.0 0.0 0.0 0.0 9.9 0.0 0.0 0.0 

Antonio 
Gibson 

0.0 0.0 0.0 0.0 0.0 0.0 50.5 -15.4 0.0 

Taylor 
Heinicke 

0.0 0.0 0.0 0.0 0.0 0.0 -15.4 44.8 0.0 

Javonte 
Williams 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.0 
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Appendix D: Week 16 Covariance Matrices 
 

MILP 
Cooper 
Kupp 

Jared 
Cook 

Josh 
Palmer 

Keenan 
Allen 

Dak 
Prescott 

Jonathan 
Taylor 

Ronald 
Jones 

Bengals 
Braxton 
Berrios 

Cooper 
Kupp 

84.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Jared 
Cook 

0.0 20.9 -4.4 -5.5 0.0 0.0 0.0 0.0 0.0 

Josh 
Palmer 

0.0 -4.4 11.5 -2.5 0.0 0.0 0.0 0.0 0.0 

Keenan 
Allen 

0.0 -5.5 -2.5 21.6 0.0 0.0 0.0 0.0 0.0 

Dak 
Prescott 

0.0 0.0 0.0 0.0 139.8 0.0 0.0 0.0 0.0 

Jonathan 
Taylor 

0.0 0.0 0.0 0.0 0.0 136.2 0.0 0.0 0.0 

Ronald 
Jones 

0.0 0.0 0.0 0.0 0.0 0.0 17.1 0.0 0.0 

Bengals 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.2 0.0 

Braxton 
Berrios 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.8 

 

Poly 
Cooper 
Kupp 

Van 
Jefferson 

Jared 
Cook 

Josh 
Palmer 

Keenan 
Allen 

Ronald 
Jones 

Alexander 
Mattison 

Kirk 
Cousins 

Bengals 

Cooper 
Kupp 

84.8 -22.1 0.0 0.0 0.0 0.0 -10.6 -12.2 0.0 

Van 
Jefferson 

-22.1 32.2 0.0 0.0 0.0 0.0 -6.6 7.4 0.0 

Jared 
Cook 

0.0 0.0 20.9 -4.4 -5.5 0.0 0.0 0.0 0.0 

Josh 
Palmer 

0.0 0.0 -4.4 11.5 -2.5 0.0 0.0 0.0 0.0 

Keenan 
Allen 

0.0 0.0 -5.5 -2.5 21.6 0.0 0.0 0.0 0.0 

Ronald 
Jones 

0.0 0.0 0.0 0.0 0.0 17.1 0.0 0.0 0.0 

Alexander 
Mattison 

-10.6 -6.6 0.0 0.0 0.0 0.0 24.2 -7.5 0.0 

Kirk 
Cousins 

-12.2 7.4 0.0 0.0 0.0 0.0 -7.5 48.3 0.0 

Bengals 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.2 
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Box 
Cooper 
Kupp 

Jared 
Cook 

Josh 
Palmer 

Keenan 
Allen 

Ronald 
Jones 

Tom 
Brady 

Alexander 
Mattison 

Braxton 
Berrios 

Jets 

Cooper 
Kupp 

84.8 0.0 0.0 0.0 0.0 0.0 -10.6 0.0 0.0 

Jared 
Cook 

0.0 20.9 -4.4 -5.5 0.0 0.0 0.0 0.0 0.0 

Josh 
Palmer 

0.0 -4.4 11.5 -2.5 0.0 0.0 0.0 0.0 0.0 

Keenan 
Allen 

0.0 -5.5 -2.5 21.6 0.0 0.0 0.0 0.0 0.0 

Ronald 
Jones 

0.0 0.0 0.0 0.0 17.1 -27.1 0.0 0.0 0.0 

Tom 
Brady 

0.0 0.0 0.0 0.0 -27.1 94.4 0.0 0.0 0.0 

Alexander 
Mattison 

-10.6 0.0 0.0 0.0 0.0 0.0 24.2 0.0 0.0 

Braxton 
Berrios 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.8 -0.7 

Jets 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.7 15.4 
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