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Abstract

Player performance prediction is a key aspect of all facets of the sports industry, whether that
be for sportsbooks offering betting lines or for professional teams optimizing their roster.
Historically, practitioners predominantly relied upon simple counting statistics as the basis for
their projections. In baseball, this may manifest as the number of times a pitcher recorded a
strikeout or a batter hit a homerun. While classical machine learning models trained on decades
worth of counting statistics describing the entirety of a player’s career can provide serviceable
predictions, we can build better models by contextualizing the events that occur on the field - on
what pitch count was the single recorded? Was anybody on base? - drawing parallels to historical
transformations in the field of computational linguistics. That is, we see the sports analytics
community as currently in the bag-of-events era and offer a steppingstone for advancing to the era
of contextual embeddings. To this end, we train a representation learning model to understand the
game of baseball as a sequence of events, and leverage this understanding towards predicting
player performance. Trained on only 6 years of data and based on only 10 games worth of play-by-
play data, our model can make single-game pitcher strikeout and binary batter has-hit predictions
that are competitive with major sports books in the US for the 2021 MLB season. Furthermore, we
achieve this performance while making a significantly larger number of predictions - 50% more
than the closest sportsbook. All code and data are available at https://github.com/c-
heat16/contextual performance prediction.

1. Introduction

Player performance prediction is a key aspect in all facets of the sports industry, whether that
be for sportsbooks offering betting lines or for professional teams when optimizing their roster.
Historically, practitioners predominantly relied upon simple counting statistics, or simple functions
derived from these counts, as the basis for their projections. In baseball, this may manifest as
counting the number of times a pitcher recorded a strikeout, a walk, an earned run, or an inning
pitched. Even the spin rate of a pitch is a counting statistic as it is a count of the ball’s number of
rotations per minute. For batters, perhaps this manifests as counting the number of walks, singles,
doubles, or home runs the batter induced from the batter’s box or simple aggregate functions such
as batting average, on-base percentage (OBP), or slugging (SLG). Then, once these statistics are
obtained, existing methods use classical tools of machine learning - i.e,, support vector machine
(SVM), logistic regression, and/or random forest, among others - to predict future player
performance based on these counts [1, 4, 5].

Baseball has a noted history of record keeping, and the most basic counting statistics required
for these predictions are available for as far back as 1975. Given decades of training data that
describe the entirety of a players’ career, the existing performance projection methods achieve
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serviceable results, as evidenced by the commercial success of many sports betting companies in
the US. However, we believe more can be gained by contextualizing the on-field events - what pitch
did the pitcher throw, and at what speed, to record the strikeout? What was the launch angle and
exit velocity of the ball a batter hit for a homerun? - drawing parallels to historical transformations
in the fields of computational linguistics and Natural Language Processing (NLP).

In the early days of computational linguistics, language was described by counting the number
of times different words appeared - an approach known as the “bag-of-words” method [13].
Although an accurate depiction of the language, the simple counting statistics left a lot to be offered.
For example, in what order did the words occur? In what sense? That is, if the word “single” has a
count of one, was it used to describe a quantity (a single sheet of paper) or an event in baseball (the
batter hit a single)? Modern, state-of-the-art techniques derive contextual representations of
language, analyzing the context in which words appear, a much more faithful description of the
language. That is, instead of having a static understanding of the word “single” models will
contextualize the representation of “single” based on the words in the surrounding context. This
transition not only improved the efficacy of models performing existing language computation
tasks (i.e, spam detection), but allowed for new tasks to be tackled (i.e, language generation tasks).

Language to be Bag-of-Words  Sequence of Contextual Player to be Bag-of-Events  Sequence of Contextual
Analyzed Vector Word Embeddings Analyzed Vector Event Embeddings
it |2 It G 96 Ball
they | O is :/; :25 Strike
“ltis 3 pu puppy | 1 a R 49 Single
P .ppy and | 2 puppy H 93 Strike
and it is 2B 20
cat |0 [ and Ball
extremely cute 3B 2
and fluffy!” aardvark | 0 it HR 6 Ball
cute | 1 is RBI 38 Ball
extremely | 1 extremel >B 1 Walk
i B BB 31

Figure 1. Visualization and comparison of historical transformations in NLP (left) and proposed transformations for the field
of sports analytics (right).

We view the sports analytics community as currently in the bag-of-events era and offer a
steppingstone for advancing the community into the era of contextual embeddings (Figure 1). To
this end, we train a representation learning model to understand the game of baseball as a
sequence of events, integrating sabermetrics, data from in-stadium sensor suites, and the
fundamental changes in the game state simultaneously. Once the model understands the game of
baseball, we can use this understanding as a starting point for making predictions about future
player performance. Not only do we believe this will lead to performance improvements in existing
areas of sports analytics, such as pre-game performance prediction, but open the door for new
questions to be asked of the game. With this methodology just in its infancy, it can make predictions
that are competitive with major sportsbooks in the US.
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2. Related Work

Major sportsbooks do not often publicly disclose the way in which they make predictions. So,
we cannot discuss them in detail here. We can, however, explore related academic assays towards
performance prediction in the MLB. While commercial sportsbook will of course adjust these
methods, and they have concerns aside from pure performance prediction, after brief discussions
with individuals in the community, we are confident their approaches are not drastically different
in kind. We first discuss the general type of data used before discussing the models that learn from
said data.

2.1.Data

To the best of our knowledge, major sports books and other prediction-making assays primarily
rely upon simple counting statistics as the basis for their projections. Soto Valero [1], for example,
explored how data mining tools could be used to predict the outcome of a regular season MLB
game. After performing an attribute evaluation and feature selection process, Valero’s team-specific
models achieved an accuracy of almost 59%, a promising result. Among those relevant to our study
(ignoring features such as indicators if a team won their previous game and which team is home),
features with the highest importance to the model were related to Batting Average on Balls in Play
(BABIP), fielding percentage (FPCT), starting pitcher Earned Run Average (ERA), Slugging (SLG),
and On-base Percent (OBP) plus slugging (OPS) - all of which are derived from simple counting
statistics.

H — HR

BABIP =
AB — HR — K + SF
Equation 1: Equation to compute BABIP where H is the number of hits, HR the number of home runs, AB the number at-bats,
K the number of strikeouts, and SF the number of sacrifice hits during a certain time period.

Put Outs + Assists

FPCT = -
Put Outs + Assists + Errors
Equation 2: Equation to compute fielding percent (FPCT).

ERA—9><ER
N 1P

Equation 3: Equation to compute ERA where ER is the number of earned runs and IP the number of innings pitches.

1B+2Bx2+3BXx3+HRX4
SLG =

Equation 4: Equation to compute SLG where 1B is the number of singles, 2B the number of doubles, 3B the number of triples,
HR the number of home runs, and AB the number of at-bats over a given period.

H + BB + HBP

OBP =
AB + BB + HBP + SF
Equation 5: Equation to compute OBP where H is the number of hits, BB the number of walks, HBP the number of hit by pitch,
AB the number of at-bats, and SF the number of sacrifice hits over given period.

OPS = OBP + SLG
Equation 6: Equation to compute OPS where OBP is computed as described in Equation 5 and SLG as in Equation 4.

Consider the equations to compute these important features presented above in Equations 1-6.
As we can see, all these statistics are fundamentally obtained by simply counting the number of
times different events occur on the field of play, without regard for how they happened. While
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metrics can be combined to describe complementary parts of the game, doing so can only reveal so
much as all of the metrics are still dependent upon a crude description of the game - event counts.

In a related study, Silver and Huffman [2] explore how machine learning methods can be used
to predict the outcome of a plate-appearance (PA) between a given batter and pitcher, finding their
approach outperforms existing methods such as log5 [3]. Across a variety of tasks, including the
prediction of strikeouts, walks, homeruns, etc., the authors find that the family of features they refer
to as “batter_historical” and “pitcher_historical” consistently rank among the most influential for
their predictions. Consulting the appendix, we see that the “batter_historical” feature group
includes a 365-day moving average of the batter’s number of PAs, per-PA rate statistics for singles,
doubles, triples, homeruns, walks, groundball double plays, strikeouts, sacrifice hits, and weighted
on-base average (wOBA), an adjustment for the parks in which these events occurred, and a binary
value indicating if the batter recorded more than 40 PAs. The “pitcher_historical” group contains
the same set of features, minus wOBA per-PA. Clearly, these per-PA rate statistics are ultimately
derived by simply counting the number of times various events occur, dividing one quantity by
another. Again, no care is given to how these events occur or their relative order.

Note that even more advanced sabermetrics not mentioned above, such as Wins Above
Replacement (WAR), are ultimately derived from simple counting statistics as well. For example,
consider a generic formula to compute the WAR of position players given below in Eq 7.

RunsCreated + PositionAdjustment + LeagueAdjustment + ReplacementAdjustment

RunsPerWin
where RunsCreated = BattingRuns + FieldingRuns + BaserunningRuns

WAR =

Equation 7: Generic formula to compute the WAR of a position player in the MLB

Each variable of the numerator is computed using what is known as the linear-weights method,
a two-step process. For example, consider the RunsCreated value. First, the practitioner must
identify the different events that will be used to evaluate position players and determine the
number of runs they are worth, on average. The events will likely include strikeouts, singles, triples,
home runs, and walks, among others. After the events are identified, it is time to count the number
of times each event occurred (C,yepnt), and the number of runs that were scored (RS), during the
time period being evaluated. Once the counts of these events have been obtained, the practitioner
will use a linear equation to determine the run value associated with each event. That is, they will
solve for the coefficients e, in Equation 8 below, where N events are included in the analysis.

RS = Aevent1 * Ceventl + Qepent2 Ceventz T o+ Qepentn CeventN

Equation 8: Example of a linear equation that could be used to solve for the run value of various events, a step towards
computing a player’s RunsCreated metric.

Once coefficients a,,.,: have been identified (i.e., the value of each event), the RunsCreated
metric for player i can then be computed by solving Equation 9 below, where C,,¢,¢.; denotes the
count of event* for player i.

RunsCreatedi = Qepent1 * Ceventl,i + Qevent2 Ceventz,i + o+ Aepentn CeventN,i

Equation 9: An equation that could be used to compute the RunsCreated metric for player i, using the coefficients obtained
in Equation 8 above.

4 ANALY 7T 4



As we can see from Equations 7, 9, and 9 above, at the end of the day, the inputs used to
compute more advanced sabermetrics such as WAR are simple counting statistics. As a result, the
way in which these events occur is not reflected in the WAR metric. Consider the following
situations. In situation A, batter X hits a dribbler down the third base line and has the speed to beat
the throw to first. In situation B, batter Y hits a ball to deep left, and while many other batters would
have reached second base, batter Y is unable to do so. For the purposes of computing WAR, both
situations are effectively the same - a single was recorded in both cases. Without saying which
situation is better, we hypothesize including such context will lead to more useful insights.

2.2.Models

Soto Valero explored four different classical machine learning models in their effort to predict
the winner of a game: K-nearest neighbors (KNN), the multi-layer perceptron (MLP), the REPTree
(a type of decision tree) and the support vector machine (SVM), exploring the efficacy of each as
both a classification and regression model [1]. One model was trained per-team. Soto Valero
ultimately find that the SVM performs the best, predicting the winner of a regular season game with
almost 59% accuracy. In a different attempt to predict the winner of a game, Elfrink et al find that
the XGBoost model can achieve an accuracy of almost 56% using their dataset [4].

To predict the result of a PA between two players, Silver and Huffman employ a multi-layer
artificial neural network (ANN) [2]. Specifically, they employ a model with two hidden layers, 80
nodes in each layer. When predicting a player’s batting average in the subsequent season, Bailey et
al explore how Statcast data can be used to improve the forecasting accuracy of the well-known
PECOTA algorithm. Bailey et al train a logistic regression model to predict a player’s batting average
for season T + 1 using Statcast data describing their play in season T [5]. Ultimately the authors
find that the predictions from the logistic regression model do not surpass PECOTA, but when
combined with PECOTA predictions lead to an improvement 56% of the time.

In general, we find that many other approaches for forecasting player performance employ
similar types of models. It is important to note that none of the aforementioned models leverage the
temporal nature of the game - perhaps as a result of the way data is traditionally made available in
this domain, as a set of counts. Given a set of counts, it is impossible to recover the specific sequence
of events the counts describe. While other computational methods for analyzing sport do leverage
the temporal aspect of the game - such as that of action valuation in hockey or soccer [6, 7] - they
do not provide a method for predicting future performance, but rather quantify the quality of
previous play. Perhaps quality of previous play could be used as a predictor of future performance,
but that is not the intention of the model. Furthermore, in those applications, actions are only
valued with respect to their likelihood of scoring a goal. While useful in many cases, it is restricted
to a one-dimensional analysis.

3. Methods

Our approach involves two steps. First, we “pre-train” a model to understand the game of
baseball as a sequence of events. Next, we leverage this understanding of the game as a starting
point and “fine-tune” the model to make predictions about a player’s future performance given the
sequence of events in which they recently participated. Our dataset, model, and training scheme are
described in the pages that follow.
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3.1. Dataset

We employ the same methodology employed by Heaton, et al., when constructing our dataset
[8], expanding the dataset to include play-by-play data from the 2020 and 2021 seasons.
Specifically, the dataset contains season-by-season data from 1995-2021, and play-by-play data
from 2015-2021. Summary statistics for the dataset are presented below in Table 1.

Dataset Summary
# Games 15,743
# PA 1.2M
# Pitches 4.6M
# Batters 2,229
# Pitchers 1,884

Table 1: Summary statistics of the dataset used in this study.

For this study, we are primarily concerned with the play-by-play data as we desire a model
that understands the game of baseball as a sequence of events. As such, the historical data from
1995-present serves more as a supplement to the play-by-play data, describing the pitcher and
batter involved in a PA.

3.2.Model Architecture

We employ the transformer architecture in this study, an architecture that is now ubiquitous
in a wide variety of deep learning disciplines, including natural language processing (NLP) and
computer vision (CV) [9, 10, 11, 12]. We briefly describe the transformer here but encourage the
interested reader to consult the original paper for more details.

A transformer model is a model consisting of one or more transformer layers, and each layer
consists primarily of one multi-head attention (MHA) module, which does much of the heavy lifting.
Each layer takes as input a sequence of vectors and outputs an updated sequence of vectors of the
same shape. In the original implementation, each vector corresponded to a word token. At a high
level, each layer operates on a vector-wise basis, updating the representation of each vector based
on the vectors in the surrounding context. The MHA module is what enables the model to
selectively tend to different parts of the context based on the vector being updated.

For example, consider Figure 2 which illustrates the

behavior of one attention head in a multi-layer transformer- ani:“;- ki
based language model. Lines connecting the right column with didn_ didn_
the left indicate the model tending to those tokens, with darker ;— ;—
lines denoting more attention being given to the connected s cross_
tokens. In this example, we see that, when updating the the_ the._
embedding for the word “it,” this head pays most attention to the bef;f:;: :t:::jse_
first two words in the sequence, “the” and “animal” - what “it” is it_ it_
in this context. Different heads in different layers will learn to e gy
perform different functions, this head appearing to learn tre tire.
pronoun resolution. The model will ultimately emit a new 5 B
embedding for each word token, informed by the context in Figure 2: Visualization of attention in a
generic transformer-based language

model.
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which they appear. Our model will utilize attention in the same manner, but each vector in the
sequence will correspond to a thrown pitch instead of a word token.

At the beginning of training, the output of the transformer model, like any deep learning
model, is not very informative. The model must be trained to emit embeddings that are useful for
performing the task at hand. The training process we employ is described below.

3.3. Training Scheme

We employ a two-phase training scheme to train our model. First, we pre-train our model to
understand the game of baseball as a sequence of events, and then fine-tune the model to predict
future performance, leveraging the knowledge accrued during pre-training. In the sections that
follow we describe how data is presented to our model as well as the pre-training and fine-tuning
processes.

3.3.1. Data Presentation

As mentioned above, we want our model to understand the game of baseball as a sequence of
events, analogous to understanding language as a sequence of words. When working with language,
the word present at each timestep can be defined by a discrete token - that word. That word
describes completely the language item conveyed at that timestep. In our application, however, that
is simply not the case - it is not possible to use a discrete token to completely describe the event at
any given timestep. Sure, you could describe the type of pitch that was thrown or the type of event
that resulted from the pitch, but that only tells a small part of the story.

For that reason, we describe every possible aspect of the event using a combination of
sources. The primary way in which each event is described is via a gamestate delta. The gamestate
describes to the base occupancy, ball-strike count, number of outs, and score, so the gamestate delta
describes a change in any of these components. Additionally, we present the model with a
description of the type of pitch that was thrown and the type of event that resulted. These three
features are presented as learnable embeddings to the model. Furthermore, we include data
collected by Statcast which contains descriptions of pitch speed, rotation, and location as well as
batted ball exit velocity, launch angle, and distance. Finally, we give the model a small description of
the players involved using traditional sabermetrics. We do not spend much time choosing which
sabermetrics to present to the model, giving the model the majority of sabermetrics available via
the PyBaseball! package and allowing it to learn which metrics are most useful. Specifically, we give
the model a description of the pitcher, batter, and their historical matchups segmented to the
scopes of the last 15 days, this season, and their career. These sabermetric inputs only account for a
very small portion of the description, roughly less than 5% of the numerals in each vector.

Individual pitch descriptions can then be combined to describe at-bats, innings, games, or
even multiple games. In our application, we elect to present the model with two very related, but
different, sequences of games: one for team-batting and another for pitching. That is, a single model
will either be presented with a sequence of N games describing a team’s batting, or N games
describing an individual pitcher. With the data presentation established, we now train the model.

3.3.2. Pre-training
The first phase of our training is pre-training, where we teach the model to have a general
understanding of the game of baseball as a sequence of events. That is, we want the model to learn

1 https://github.com/jldbc/pybaseball
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the general structure and progression of a game in the MLB - that a strikeout can only occur when
there are two strikes in the count, the inning ends when three outs are recorded, or that in some
situations, an intentional walk is warranted, for example. Fortunately, there is a large amount of
existing work into sequential modeling in the field of NLP from which we can build.

Specifically, we adapt the Masked Language Modeling (MLM) scheme proposed by BERT [10]
and perform Masked Gamestate Modeling (MGM). That is, when presenting our model with the
sequence of events describing the N previous games, described in §3.3.1, we randomly mask 15% of
the vectors in the sequence, asking the model to predict the missing gamestate and event. In order
to correctly predict the missing entities, the model must inherently learn the general structure and
progression of a game in the MLB. That is, based on the surrounding set of events, the model will
learn to discern the instantaneous gamestate at each timestep, enabling it to make informed
predictions about masked entities.

\;Player1 Player24| 000 | Playergy | Event, ; I Event, , Event, 3 Event, , Event; s l [MASK] ‘

’ Event, ; i Event, g !—é\;er—lt: i Event, ;o E {MASK] ! Event, 5, Event, 15 Event; 14 Event; 15 Event; 16
00O ’ Event; 34 ! Event, 3 i Event; 49 i Event, 4 }WASK] I Event; 43 ‘ Event; 44 ‘ Event, 45 ‘ Event; 46 ‘
000 ‘ Event,; Event,, l Event,; Event,, i Event,s [MASK] ‘ Event,; Event,g ’ Event, o
006 ‘ [MASK] | Eventyg s, ‘ Event;os3 | Event;gs, | Eventygss | Event;osg I 000 ‘ Eventyg ‘ Eventyg,

Figure 3: Overview of or MGM pre-training scheme using player embeddings. When presented with a sequence
of events describing N games, the model will randomly mask 15% of the events and predict the missing
entities. The introduction of player embeddings allows the model to discern a description of how each player
has performed in this context, which it can use to make more accurate predictions for masked entities.

MGM helps our model learn about the sequence of events which comprise a game in the MLB,
but we are ultimately curious about the players who effectuate said sequence of events. For this
reason, we prepend special player embeddings to the sequence of events that our model processes.
In our application, if we have a sequence of embeddings describing games [G;_y, Gi_y_1, -, Gi_1],
we introduce player embeddings for the players in the starting lineup in game G;. When presenting
these player embeddings to the model, we manipulate the attention mask such that the player
embeddings can only tend to events in the sequence in which the corresponding player was
involved. During pre-training, the model learns to fill the player embeddings with signal describing
said players that it can use to best predict missing events. A high-level overview of the processing is
described in Figure 3.

3.3.3. Fine-tuning

Next, we can use the model’s basic understanding of the game of baseball as a sequence of
events as a starting point to make predictions about how players will perform in the future, a
process known as fine-tuning. Specifically, we would like to make predictions about how a starting
pitcher and nine starting batters would perform in a matchup against one another. This amounts to
a rather straightforward 4-step process: 1) Identify the starting pitcher and starting batters for
(half of) a particular game G, 2) Analyze how said players perform in game G, obtaining labels L for
our predictions, 3) Obtain embeddings describing player performance in their past N games using

‘/A\ML Y77 8



our model, 4) using these embeddings, predict targets L using a new linear projection layer. This
process is described in Figure 4.

1 . : Batter Batter,
Team t;aat;:zg last N Pitcher last N games { Pitcher | Batter; |-b | Pred Head ® | predictions
¥ h . Batter Batter,
‘ Pitcher | Batter, |‘ Pred Head » Predictions
. . 00
. : Batter Batter,
Batter, ‘ Pitcher | Batter, |¢ Pred Head | * Predictic?ns
Batter, b
000 ("
. Pitcher Pitcher
‘ Batter, ‘ l Pitcher ‘ Batter, | Batter, ‘ ©0 0O » Pred Head » Predictions

Figure 4: Overview of our fine-tuning process. Once the previous N games for the starting pitcher and batters are
identified, they are processed by our model to obtain player embeddings. These embeddings are then used to make
performance predictions for the starting pitcher and each batter.

4. Results

We performed the two-step training process described above, and here present results from the
fine-tuning phase as we believe that will be of most interest to the audience. Specifically, we pre-
trained the model to process a sequence of events from 10 games and fine-tuned it to predict the
number of strikeouts, hits, and walks that will be recorded by each batter and the starting pitcher.
Performance metrics describing said predictions are described below in Table 2.

Pitcher Batter

Target MSE MAE R2 MSE MAE R2
Strikeouts | 5.37 1.85 0.21 0.43 0.57 0.06
Hits 4.62 1.72 0.07 0.42 0.57 0.04
Walks 1.48 0.98 0.04 0.17 0.29 0.02

Table 2: Performance metrics after fine-tuning our model to make predictions about future player performance. The MSE
(Mean Squared Error) and MAE (Mean Absolute Error) describe the magnitude of error in the model’s predictions, lower
values indicating a better prediction. The R? metric describes the strength of the model, with values closer to 1 indicating a
stronger model.

In analyzing the R2 scores in Table 2, it clear that the model is significantly better at making
predictions about future pitcher performance than future batter performance. This intuitively
makes sense - although each type of player is described using up to 10 previous games in which
they played, batters and pitchers will participate in a different number of events during that time.
Pitchers, for example, will participate in every event on the field for which they are pitching. Batters,
however, only participate in every 9th AB for their team. Over the course of a single game, the
pitcher is likely to participate in roughly 9x as many ABs as a batter - more examples of how they
impact the game. Furthermore, previous studies, such as Silver and Huffman, have used a 365-day
moving average of statistics to describe batter, a much larger time span than just 10 games. Given
out problem formulation, these results make sense.

Analyzing performance metrics from a single model is not wildly informative, however. For this
reason, we also compare with predictions from three major sportsbooks in the US. Although they
likely make some of the same predictions internally, the predictions the sportsbooks publicize, and
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that we can compare against, are those of pitcher single-game strikeouts and binary batter has-hit
predictions. While sportsbooks are not only concerned with making accurate predictions - they
may want to consider the number of bets received on each side of a line, for example - we have
been informed by people in the industry that they are a rather faithful reflection of their real
predictions. A comparison of predictions from our model and various sportsbooks is presented
below in Table 3.

It is important to note, however, the difference in binary batter has-hit predictions in our
formulation and that used by the books. In our formulation, we make a prediction as to whether a
batter will record a hit against a given starting pitcher. The books, on the other hand, make a
prediction as to whether a batter will record a hit in a given game — arguable an easier task. If a
batter has N ABs against the starting pitcher, they will have at least N AB’s over the course of the
entire game. Thus, there are simply more opportunities for batters to reach base and a larger
number of individual batters are likely to reach base, increasing the likelihood of selecting a batter
that will record a hit, even if at random.

Pitcher Single-Game Strikeouts Batter Has-Hit

Source | # Predictions | MSE | MAE | R? | Longest Streak
Book 1 1,857 496 | 1.80 | 0.23 8
Book 2 2,957 5.26* | 1.85% | 0.21* 9
Book 3 3,239* 534 | 1.87 | 0.18 17
Ours 4,856 5.37 | 1.85% | 0.21* 16*

Table 3: Accuracy of 2021 projections from various sources. For each metric, the best score is underlined, and the second-best
score appears with a * next to it.

The results presented in Table 3 tell an interesting story. Although our model is not the best
model on any metric presented, it is certainly competitive. For pitcher strikeouts our MAE is only
0.05 higher, and our R2 only 0.02 lower, than that of the best sportsbook during the same time
period. Our longest streak of correct batter has-hit predictions, 16, is only one day away from the
longest streak obtained using a major sportsbook’s projections. The biggest difference between our
predictions and those of the sportsbooks, however, is in the sheer quantity. For pitcher strikeouts, it
appears as though the sportsbooks only offer a line if they are confident in that projection. Our
predictions, on the other hand, are made for every starting pitcher in 2021 - 50% more predictions
than the next closest sportsbook. Our model’s projections are competitive with major sportsbooks
while reflecting a larger number of predictions.

It is worth highlighting the data utilized to make these predictions. Our model makes
predictions based only on 10 games of in-game events from games played in the MLB, trained on
only six years of data. For starting pitchers, the model is presented with a sequence of events
describing their 10 most recent starts. For batters, however, the model is presented with the
sequence of events describing how their team’s batting performed against the 10 most recent
starting pitchers their team faced, deriving embeddings for starting batters based on how they
influenced said sequence. If a batter did not start in any of their team’s 10 most-recent games, then
our model is unable to derive an embedding of their performance. In a similar vein, if a starting
pitcher hasn’t previously made a start in the MLB, then our model will have nothing to base its
predictions on for that pitcher. To demonstrate this, we present Figure 5, which describes the
number of games used as the basis for prediction for both starting pitchers and batters.
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Figure 5: Visualization of the number of games used as basis for predictions for both starting pitchers and batters.

Figure 5 describes two very different situations for starting pitchers and batters. For pitchers,
we see that in most cases players are described using a full context of 10 games. However, we see
that batter predictions are often made based on significantly fewer than 10 games of effective
context. This explains, in part, why our model made worse predictions for batters than pitchers. A
potential option would be to include more games of context - if a batter started N games for their
team, describing more of their team’s games will increase the chance said player started in one of
the games.

This strategy does not address new players, however, like rookies. When a player makes their
first start in the MLB, there are no records of in-game events in the MLB in which said player
participated - no amount of context will include a description of said player. Before the player made
it to the MLB, however, they likely progressed through the minor league systems, and records of
how they performed in the minors do exist. Moving forward, leveraging descriptions of how players
performed in the minors is a likely path towards improving the performance of our model, and is
likely something the major sportsbooks are already doing.

4.1.Embedding Visualization

As mentioned in section 2.1, this work is motivated by the observation that traditional sports
analytics methods largely treat all events of the same type (single/double/triple/etc.) as being the
same, and the idea that more analytical insights can be gained by contextualizing the events that
happen in the field of play. Our model is giving quality predictions, but is it truly contextualizing the
game, or uncovering some statistical phenomenon? To this end, we have our model process
randomly selected sequences of events from the 2021 season and extract roughly 300,000 event
embeddings for visualization.

Presented below in Figure 6 is a visualization of roughly 12,000 singles from the 2021 season,
visualized with respect to different aspects of the game. An immediate takeaway from Figure 5 is
that our model clearly finds more than one way to describe a single in the game of baseball. To
start, the model appears to consider outs when up when describing singles, evidenced by the plot in
the third column of the first row - in the central mass of embeddings in the bottom half of the plot,
there appear rather strong striations for singles induced with zero, one, and two outs already
recorded that inning. Additionally, the model includes a notion of runner movement around the
basepath when describing events, as seen in the plots in the bottom row of Figure 5. The central
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mass contained in the bottom half of the plot seems to mostly describe singles that occurred with
the bases empty, while the groupings around the peripheral describe singles that moved players
around the basepath, potentially inducing a run scored. Finally, singles that scored one or more run
also appear in the same region of the plot in column 1 of row 2.

Single Embedding Visualization
Ball Count Strike Count Outs When Up Outs Delta

o

On 1B Delta On 2B Delta On 3B Delta

Figure 6: Visualization of singles as seen by the model. The first three plots in row one describe the state of the game before
the single was induced, while all other plots describe the change in the game as a result of the single.

For another point of reference, we visualize roughly 20,000 strikeouts below in Figure 7. Again,
we quickly see that our model finds more than one way to describe a strikeout in the MLB. Similar
to the visualization of singles, we see that the model takes the number of outs when up and base
occupancy in to account when describing strikeouts. In doing so, the model inherently learns to
incorporate some notion of leverage into its descriptions. Originally, the notion of leverage was
used to describe how important a situation was when a relief pitcher entered the game. Technically,
high leverage situations (PA’s) are those in which the win probability for the pitching team can
change drastically2. In many cases except for that of a blowout, situations with multiple runners on
base could be considered high leverage. As we can see, our model naturally identifies strikeouts
recorded in high leverage situations without any guidance to do so.

2 https://legacy.baseballprospectus.com/glossary/index.php?mode=viewstat&stat=249
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Strikeout Embedding Visualization
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Figure 7: Visualization of strikeouts as seen by the model. The first plot describes the number of outs before the strikeout was
recorded, while the remaining plots describe the occupancy of each base.

5. Conclusion

In the pages above we describe our method for contextualizing the game of baseball and
demonstrate how it can be used for prediction purposes. Our model can make single-game pitcher
strikeout and binary batter has-hit predictions that are competitive with three major sportsbooks
in the US, all while in a much more restrictive setting. To start, our model is trained using only six
years of data to make predictions based only on 10 games-worth of play-by-play data in the MLB -
a small window into a player’s career. Sportsbooks, on the other hand, leverage decades of data
describing the entirety of a player’s career in the MLB, as well as metrics describing their time in
the minor league. It is also worth noting that our model yields similar prediction performance to
those employed by the sportsbooks but makes these predictions for at least 50% more pitchers.

We view this as among the first steps towards contextualizing the game of baseball, and
ultimately sports in general. Although the sports analytics community has provided many insights
using existing approaches, i.e, the “bag-of-events” approach, we have highlighted some of the
shortcomings in this family of methods - mainly that all events of the same type are treated the
same. As demonstrated in Figures 6 and 7, our model understands events on the field based on the
context in which they occur and can leverage this understanding to make predictions about future
player performance.
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