
a a m p e

2022

"HOW DO I KNOW
IT WORKS?"

A technical brief on implementing
effective, relevant, and 

adaptive messaging



IT'S A REASONABLE
QUESTION.
Sometimes we hear it from a team deciding
whether to give Aampe a try. Sometimes we’ve
run push notifications for several weeks before
they ask. But they always ask, and they should:
“how do we know this is working?”

This question goes to the heart of how we
evaluate messaging - the thing we call the "the
what-if? model" in A User Story, the illustrated
storybook we wrote to explain our algorithms.

 

This booklet is not the storybook version. It’s
going to get a little technical. We’re going to
explain, as the team who designed Aampe’s
ability to learn, why we are confident in that
learning.

" H O W  D O  I  K N O W  I T  W O R K S ? "

2

Read A User Story
by visiting
aampe.com/blog/
a-user-story

https://www.aampe.com/blog/a-user-story
https://www.aampe.com/blog/a-user-story
https://www.aampe.com/blog/a-user-story


AN OVERVIEW OF OUR
LEARNING SYSTEM
This section delves into the weeds, touching on
the technical details of each major part of our
learning system. Be prepared for lots of jargon,
with links to documentation or Wikipedia pages. 

3

A high-level
overview of this
section exists in A
User Story. 

THE JOURNEY GRAPH

Have the customer select one or more events
they want to use as goals. Events could be
things like “watch a video”, “pay
subscription”, “view item”, “sign up for
service”, etc. Different campaigns can have
different goal events, and a single campaign
can have as many goal events as the
customer wants.

Use a big chunk of a customer’s event’s
stream - say, 30 days - to create an adjacency
list. For every event A, B, C…k, calculate the
percentage of users who triggered event A
who also triggered event B. Weight the
percentage by how close the two events
were in time - full weight if it was within the
same minute, less if it was within the same
hour, a lot less if it was over a day, etc. 

The Journey Graph summarizes what we know
about the ways users can move through
different activities in an app. Briefly:

We referred to an
earlier version of
the Jounrey
Graph as “the
rewards menu” in
the first edition of
A User Story and
recently published
a blog post
explaining many
of the details of
how the graph
works.

This adjacency list
defines a graph of
event
relationships, and
any chain of two
or more events
constitutes a user
journey. That’s
why we call it the
Journey Graph.

https://en.wikipedia.org/wiki/Adjacency_list
https://www.aampe.com/blog/user-journeys-and-priorities
https://en.wikipedia.org/wiki/Graph_theory


4

If multiple goal
events have been
defined, average
the event weights
across goals to
get a single
weighting
scheme.

For each goal event, traverse the Journey
Graph to find all simple paths leading to the
goal. For the sake of limiting computational
complexity, limit the path traversal to some
reasonable size - say 4 or 5 steps. For each
path, aggregate all of the edge weights,
penalizing weights that are further from the
goal (a weighted harmonic mean works well).
The result is a heuristic that represents the
relative degree to which each event feeds
into the target event. Normalize the weights
so the largest weight is 1.0.

We’d ignore relevant behavior. Even if a user
did everything users normally do to lead up
to the goal behavior, but hadn’t done the
goal behavior itself at the time we ran the
model, that would count as just as much as
failure as if the user had done nothing at all.

Often, we’d lack the data to train the model.
Goal behavior is often a goal because it is
relatively rare. We aren’t interested in how
much the entire user base did a thing - we
divide the user base into smaller groups that
get exposed to different messaging
dynamics. Ideally, we want to see positive
and negative cases in all of those subsets. 

We use weights from the Journey Graph in our
models. We want to focus our learning on the
events that our customers think are important. If
we limited to feed our models data that directly
related to the goal events, we’d face two main
problems:

Allowing all
events to count as
positive behavior,
but weighting
how much each
event really
counts when
training the
model, allows us
to avoid the two
problems
described here.

https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Glossary_of_graph_theory#weighted_graph


5

THE USER LANDSCAPE
Unless it is the user’s very first day on the app,
we know something about them before we ever
assign them a specific notification. We perform a
dimensionality reduction on this data (we
currently use a version of principal component
analysis that can be run iteratively and on sparse
data in order to accommodate large numbers of
user records without running into memory
constraints). This allows us to denoise the data,
distilling it into a relatively small number of
informative dimensions. This is what we call the
User Landscape.

The main purpose of the User Landscape is to
efficiently measure the behavioral “distance”
between users. Users who have similar scores on
all components of the user landscape are more
similar than those who have similar scores for
the more informative components (meaning
they explain a greater portion of the total
variance) but dissimilar scores on the less
informative components, and those users are
more similar than those who have dissimilar
scores across all components.

The User Landscape allows us to accomplish
reasonably good experimental design without
having to hand-craft that design for each
experiment for each customer. We’ve explained
this process in more detail elsewhere, and have
even provided a detailed walk-through. 

Sometimes we
have attribute
information even
for those new
users - a gender
identifier, part of
the IP address or
a geographic
location marker,
maybe even a
segmentation our
customer uses
internally. At the
very least, we can
aggregate past
behavior,
counting up the
number of times
each user has
triggered different
app events over
different time
periods. 

https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Sparse_matrix
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Design_of_experiments
https://www.aampe.com/blog/conditioned-experiments
https://www.aampe.com/blog/a-walk-through-our-conditioned-experimentation-process


6

We can use the latent space that makes up the
User Landscape to cluster users into relatively
homogeneous groups and then use those
groups to make messaging assignments. So if
we want to assign, say, 35 different time
increments (say, five 3-hour messaging windows
per day, with a no-message period during the
night, spread over all seven days of the week),
then we can combine users into clusters of 35
users each and randomly assign one of each of
those time increments within each cluster. That
ensures that similar people get different
assignments and different people get similar
assignments.

It’s become a
truism to talk
about machine
learning models
in terms of
“garbage in,
garbage out.” Our
User Landscape
and “conditioned”
assignment of
messaging
features ensures
we don’t put too
much garbage
into our model. 

THE WHAT-IF? MODEL

It’s been around for a really long time (more
on that later).

It can handle data with high dimensionality
and little normalization, as well as both
categorical and continuous data, and null
values can be easily represented as dummy
variables. This makes it relatively easy to
deploy the same kind of model for all of our
customers without requiring a lot of hand-
holding.

It’s easy to parallelize and therefore there are
a number of implementations that can easily
operate at scale.

We use an ensemble of tree-based models to
understand and make decisions about the
notifications we send to users. We chose this
type of model for several reasons:

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Continuous_or_discrete_variable#Discrete_variable
https://en.wikipedia.org/wiki/Continuous_or_discrete_variable#Continuous_variable
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Decision_tree


7

It’s become a
truism to talk
about machine
learning models
in terms of
“garbage in,
garbage out.” Our
User Landscape
and “conditioned”
assignment of
messaging
features ensures
we don’t put too
much garbage
into our model. 

It tends to achieve reasonably good results
even for “small” data. That’s important for
smaller apps that work with us.

It’s reasonably easy to evaluate model
performance using cross-validation and
several well-known metrics (more on that
later).

It can implicitly handle non-linear
relationships, so we don’t have to investigate,
discover, and manually specify interactions
between variables.

It’s pretty robust against violations of
assumptions and is relatively difficult to over-
fit. 

We call our implementation a “What-If? model”
because the logic of decision trees is particularly
well-adapted to asking questions about what
might happen under certain circumstances. All
that’s required is that the model have a
reasonable number of examples of situations
where different conditions are observed. Our
conditioned assignment allows us to ensure that
the model gets all the comparisons it needs to
answer all the questions we want to ask.

For example: “we
messaged this
user on a Monday
but what if we
had messaged
them on a
Friday?”, “what if
we had messaged
a (behaviorally)
very different user
on a Monday?”

https://www.researchgate.net/figure/The-Random-Forest-AUC-versus-the-training-sample-size-results-and-fitted-power-law_fig1_319422745
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Nonlinear_regression
https://en.wikipedia.org/wiki/Interaction_(statistics)
https://en.wikipedia.org/wiki/Overfitting


8

A NOTE ON TECHNOLOGY
CHOICES
We noted that tree ensembles have been
around for a long time. We wholeheartedly
endorse the position voiced in 2015 by Dan
McKinley: “choose boring technology.” Older
technologies are much more battle-tested than
newer ones. That, in and of itself, is not reason
enough to choose an older technology, but it is
reason enough to choose an older technology
unless you can find a really compelling reason (a
business reason, not just personal interest), to
choose the newer technology.

But other than that: time, money, and attention
spent on cutting-edge technology is time,
money, and attention not spent on innovating in
other ways. As McKinley put it:

The first
implementation
of the random
forest, for
example, is
almost 30 years
old, and decision
trees are at least
10 years older

“...every company gets about three
innovation tokens. You can spend
these however you want, but the
supply is fixed for a long while…. If
you choose to write your website
in [insert latest javascript
framework here], you just spent
one of your innovation tokens.... If
you choose to use service discovery
tech that’s existed for a year or
less, you just spent one of your
innovation tokens. If you choose to
write your own database, oh god,
you’re in trouble.”

https://mcfunley.com/choose-boring-technology
https://en.wikipedia.org/wiki/Design_of_experiments
https://en.wikipedia.org/wiki/Design_of_experiments
https://en.wikipedia.org/wiki/Design_of_experiments
https://www.aampe.com/blog/conditioned-experiments
https://www.aampe.com/blog/conditioned-experiments
https://www.aampe.com/blog/a-walk-through-our-conditioned-experimentation-process
https://www.aampe.com/blog/a-walk-through-our-conditioned-experimentation-process
https://www.aampe.com/blog/a-walk-through-our-conditioned-experimentation-process
https://www.aampe.com/blog/a-walk-through-our-conditioned-experimentation-process
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Decision_tree_learning


At Aampe, we care about helping apps treat
their users like people - listen to them,
understand what they like and don’t like, and
respond promptly and authentically and not so
often that they get sick of hearing from you. That
requires a lot of innovation. We don’t need to
innovate on our model implementation. We
need a workhorse model that can handle the
load of all of our other innovations.

One last note, just because it’s a question that
has come up repeatedly: “why don’t you use
deep learning?” You can find ten answers to that
question here, five of which apply most directly
to our situation:

9

https://arxiv.org/abs/1801.00631


10

Deep learning is data hungry. Really data
hungry. We don’t think you should need to
have a million daily active users in order to
send notifications that won't bug or bore
your users.
Transfer learning isn't robust yet. We need to
take lessons from one situation and apply
those lessons to other situations. We've
worked out a way to do that, and it doesn't
involve deep learning.
It's not sufficiently transparent. Deep
learning is the most black-boxy of the black-
box algorithms, which makes it harder to
debug, and harder to adapt to new
applications. It's not worth spending our
attention on this at this time - refer to the
point made earlier about innovation.
It mostly only works well on very stable
worlds. Deep learning can beat the pants off
a human when it comes to Jeopardy or Go,
but its performance is not so impressive in
more organic applications. 
It's computationally expensive. It's not just a
matter of having a lot of memory. Often deep
learning requires specialized hardware to run
at scale. We have no reason to make that
investment at this time.

That’s more than we generally like to say about
deep learning, but, as we said, it comes up often.
Long story short: that’s not where we choose to
invest our innovation tokens. Other investments
are going to give us, and our customers, a better
return.

Yes, deep learning
is possibly the
only thing that
will ever get us
self-driving cars,
but (1) we don't
have real self-
driving cars yet,
and (2) we aren't
building self-
driving cars at
Aampe. We aren't
dealing with
computer vision
or audio
processing or any
of the other things
that deep
learning is really
good at.

https://en.wikipedia.org/wiki/Graphics_processing_unit


ALTERNATIVE
HYPOTHESES

The model we used to make those
individualized decisions was so
uninformative that we actually made
decisions based on random noise.

We’re taking credit for things users were
going to do anyway - we predicted, but we
didn’t influence.

Our messages prompted people to act, but
the specifics of the message mattered much
less than the simple fact that the person got
the notification.

In the previous section, we explained how we do
what we do. In this section, we explain why what
we do works. 

Science is about defining multiple competing
hypotheses (stories about what you think is
going on) and then doing your level best to
destroy all of those ideas. Those stories that
refuse to be destroyed deserve the least amount
of skepticism. We evaluate our work through a
process of story-killing.

Our preferred hypothesis could be stated as:
“the users we messaged did a thing because we
sent each individual user the individually right
message at the individually right time.” There
are a number of plausible alternative
hypotheses:

11

Recently, one of
our co-founders
published a post
about the lazy
thinking that
leads many
people to A/B test
their way into
unwarranted
conclusions.
Creating a
“control” group
and comparing it
to a “test” group is
not inherently
scientific. 

https://towardsdatascience.com/no-you-dont-need-a-holdout-group-ab0995860aca


We messaged the statistically right thing at
the statistically right time for each user,
modeling general trends rather than
individual preferences.

We’re just improving general engagement
but not influencing the things that really
matter to our customers.

Let’s walk through each of these alternative
hypotheses and look at what we do to mitigate
each one.

12

There are many
ways to assess
model fit (just
check out the size
of the metrics
section of the
scikit-learn
documentation).

ALTERNATIVE HYPOTHESIS #1: 
OUR MODEL IS LYING TO US
We use a machine-learning model to process
the data our managed notifications generate,
and we make decisions about what to next
message users based on those model results. At
the heart of any model-based decision is the
hypothesis that our model is reasonably good,
and we would be foolish to not try to refute that
hypothesis before trusting the model. If a model
poorly fits the data, then the model parameters
and predictions could very well tell us more
about random noise than any particular signal.

We cross-validate our models and look at three
different metrics, which we summarized for a
few runs of our model in a presentation to one
particular customer:

https://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics


13

You can read
more about
precision and
recall and receiver
operating
characteristic if
those topics
interest you. It’s
enough here to
say that each is a
percentage, and
in each case a
higher
percentage is
better.

Precision and recall require a decision
threshold. We always use a probability of 0.5
as the boundary between “the model
predicts the user won’t act” and “the model
predicts the user will act”. We use that
threshold because we balance the classes in
our model (so it learns from the same
number of people who didn’t do a thing as
people who did), so we expect that a 50%
probability really should indicate a 50%
chance of doing a thing.

In all cases, all of these values are respectable,
and in most cases they are quite good. A couple
things to note:

https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Receiver_operating_characteristic


14

Notice that all three metrics drop during the
third week in the table above and two of
them drop again in the fourth week. Our
model had spent two weeks learning based
on one set of inputs, and in the third week it
had to consider an additional variable that
we threw into the mix. So we expected the
model to have difficulty with new
information.

The evaluation metrics we generate from our
models consistently show that they make
reliably high-quality predictions. So we have
several good reasons to not believe that our
system is just feeding us random noise.

ALTERNATIVE HYPOTHESIS #2: 
CORRELATION BUT NOT
CAUSATION

Find the users who consistently do some
valuable thing in the app. 
Figure out attributes that those users tend to
have in common. 
Make predictions based on those attributes.
Send messages to users who have high
predictions.
Take credit when those users once again do
the thing they had already done before and
therefore were probably going to do anyway.

If we wanted to, we could fairly easily find
ourselves in pretty plush circumstances:

1.

2.

3.
4.

5.

A whole lot of “look-alike” modeling does exactly
this. We don’t do this.



We don’t use our model predictions directly in
our decisions. Rather, we use what the model
learned about associations between various
baseline conditions (what we call The User
Landscape) and messaging details (what we call
assignments) on the one hand, and user
behavior on the other hand. This is why we call it
a “what-if?” model: the structure of the model
allows us to ask “what if we’d messaged this user
on a Tuesday instead of a Sunday?”, but it also
allows us to ask “what if we hadn’t made any
assignments at all?” This is what we call our
baseline probability.

The baseline probability is the model’s
judgement about how likely a user would be to
do the thing we wanted them to do, based solely
on the attributes, past behavior, and all those
other things that don’t involve us putting a
notification in front of them. This is what those
baseline predictions looked like over several
weeks for one of our customers:

15

The chart shows
the percentage of
users who move
from one level of
baseline
probability to
another over
multiple weeks.
The thicker the
band, the more
users, and the
darker the band,
the higher the
initial baseline
probability.



The baseline changes each week depending on
what we were able to achieve, so sometimes a
lot of users have a low baseline one week and a
high baseline another. We then compare this
baseline probability to a “target probability”,
which is what we get when we ask our model
“how likely would this user be to act given the
user’s baseline data plus a particular message
assignment?” The relationship between baseline
probability and target probability determines a
base score - called that because it forms the
base upon which we build our personalization
scores:

16

Think of this as a
lookup table: find
a user’s baseline
probability along
the horizontal axis
and their target
probability for a
particular
messaging
decision on the
vertical axis. The
color and shade of
the cell tells you
what their base
score will be: the
darker the black,
the lower the
score; the brighter
the orange the
higher the score.

Users whose baseline probability is equal to
their target probability get a base score of
0.5.

There are several important things to notice
about this chart:



There are users with an extremely low target
probability (less than 0.1) who still get a very
high base score (greater than 0.9) because
their baseline probability is so low.

There are users with a pretty high target
probability (greater than 0.7) who still get a
pretty low base score (lower than 0.3)
because their baseline probability is already
high.

So our base score doesn’t answer the question
“how likely is this user to act?”. Rather, it answers
the question “how likely is this user to act if we
make a particular decision about their
notification?” It can be a good decision to
message someone who is unlikely to act in
general but is five times more likely to act if we
message them. It can be a bad decision to
message someone who is likely to act even if we
don’t message them at all.

17

Incidentally, this
method is
conceptually
similar to
methods like
Granger causality
and vector
autoregression
used in
econometrics. All
three methods are
quite different in
implementation,
of course, but they
all approach
determination of
attribution
through a similar
lens: each method
looks at a baseline
and then looks at
the baseline plus
some intervention.
The difference
between the two
is an estimate of
the causal effect.

ALTERNATIVE HYPOTHESIS #3: 
MESSAGING EFFECTIVENESS BUT
NOT MESSAGE EFFECTIVENESS
So we demand an increase in the target
prediction over the baseline before we decide
that a message influenced the user’s behavior,
but how do we differentiate between a message
having influence and any message having
influence? It’s plausible that we just need to get
something in front of a user, no matter what
that thing is - it’s the difference between
prompting users to act and incentivizing them
to act. 

https://en.wikipedia.org/wiki/Granger_causality
https://en.wikipedia.org/wiki/Vector_autoregression


We calculate a “counterfactual average” for each
of our base scores. If we’re learning what day of
the week to send notifications, the
counterfactual average for Monday is the
average of Tuesday's through Sunday's base
scores. The higher the base score is relative to
the average, the more evidence we have that
the important action was sending on a Monday
and not just sending a message in general. This
results in an “unadjusted” personalization score:

18

If a user has a counterfactual average more-or-
less equal to that user’s base score, then the
base score remains unchanged. If the
counterfactual average is lower than the base
score, then we inflate the base score because
that means, no matter how poorly a user may
respond to that assignment, it’s better than the
alternatives. If the counterfactual average is
higher than the base score, then we deflate the
base score because, no matter how well a user
may respond to that assignment, there are
better choices available.

This looks similar
to the previous
graph, showing
the calculation of
the base score,
but notice that
the white spaces
(indicating a
result near 0.5,
indicating the
realm of “we don’t
know how a user
feels about this”)
don’t follow the
black diagonal
line.



19

ALTERNATIVE HYPOTHESIS #4: 
SEGMENTATION BUT NOT
PERSONALIZATION

Do the thing we want them to do;
Be very similar to many other users who
didn’t do the thing; and
Get a message assignment that doesn’t tend
to work out as well for other users.

Basing decisions on modeled probabilities runs
the risk of smoothing over individually-
important differences. That’s because models
are only as good as the data we feed into them.
Remember: none of our model validation scores
were at 100%. That means there are other factors
- perhaps just random noise but perhaps
something more systemic - that influence
outcomes, and our models aren’t capturing that.
So it’s entire possible for a user to:

1.
2.

3.

Under those conditions, the user is going to get
a low personalization score. This is what
segmentations tend to do - find what works for a
lot of people on average and then act as if the
preferences of every individual in the segment
fit that average. That works ok in some
situations, but not in all situations, and besides,
we can do better.

If a user reacts to our message, we inflate the
personalization score. If the reaction is unrelated
to our customers’ goals - just a brief visit the app,  
but nothing more - we boost their score a little. If
the reaction is the exact thing we had as a goal,
we boost it more.

We can also boost
base on when a
user reacts: if they
act two days after
we message, we
boost them a
little; if 30 seconds
after we message,
we boost them a
lot.



20

This chart shows how that adjustment has
tended to work out recently for one of our
customers:

Each row of the
chart represents a
bin of unadjusted
personalization
scores: scores
between 0.0 and
0.1, between 0.1
and 0.2, and so
forth. The shaded
area on each row
shows the
distribution of
upward
adjustments we
made based on
user activity.

Users who had higher unadjusted scores
tended to get less of a boost, because they
were already high and therefore had less
movement available before they hit the
maximum score of 1.0.

Most users got no boost at all - the shaded
areas are thickest at the left side of the chart,
indicating a boost of zero or near-zero. But in
cases where users did react, their scores
reflect that.

 You can easily see a couple things:



ALTERNATIVE HYPOTHESIS #5: 
GENERAL ENGAGEMENT BUT NOT
TARGETED GOAL ACHIEVEMENT
One criticism against claims of digital
advertising and marketing effectiveness comes
up so often that it’s kind of recognized as just
how business messaging works: advertising
drives clicks. Clicks aren’t what most customers
care about. Because we integrate with an app’s
event stream, we don’t focus on clicks. If you
want a user to actually watch a video, or actually
make a purchase, or actually play a game, or
actually do any of the things your app allows
users to do, we can measure that directly, and
we can focus our learning systems on those
goals.

In fact, we go even further than that. Every event
feeds into other events. Some events lead
consistently and immediately to another, while
other events lead to many other events, maybe
after quite some time, depending on the nature
of the event and the specific detail of what the
user wants. These are user journeys. When our
customers identify a goal event, we use all of the
information we’ve collected about user journeys
to create weights that we then use to train our
models. 

21

People don’t
obsess over click-
through rates
because they can
easily see how a
click leads to
value for their
company. They
obsess because
they know that
not clicking leads
to no value. The
click isn’t what
they care about,
but it's the only
thing they can
measure, so they
focus on clicks
and try not to
think too much
about the dropoff
that happens
between a click
and the
achievement of
any meaningful
goal.



22

This is the Journey Graph we mentioned earlier:

Naturally, the actual goal event gets the highest
weight, but any events that consistently feed
into that goal can receive substantial weight as
well. This not only gives our models more data to
work with, but also makes our personalization
scores reflect the probability of actually doing
the thing our customers care about most, which
in most cases, isn’t just general engagement.



SO HOW DO WE KNOW
IT WORKS?
The previous section shows that we work to
mitigate considerations that could undermine
our preferred hypothesis by plausibly rendering
us unable to reject any of the alternatives. It
doesn’t show how well any of those mitigating
strategies work.

THE CONCEPT OF LIFT
Lift is fundamentally a metric of attribution, and
attribution, particularly when it comes to human
behavior, is  never straightforward. Any user has
many different needs, wants, preferences, and
constraints influencing their behavior. We have
to navigate those preferences and sometimes
arrange those constraints to get them over the
line from “I could do that thing” to “I’m going to
do that thing” and eventually to “I did that
thing.” 

A lift calculation involves counting up how many
users you influenced, which means it necessarily
depends upon the story you tell to justify taking
credit for an outcome - and that’s why it’s a
powerful way to assess competing hypotheses.
Hypotheses are themselves stories, so the
method fits the objective. Unlike goodness of fit
or statistical significance, lift estimates practical,
real-world impact. For any competing
hypothesis, what would that impact metric need
to look like for the hypothesis to be true?
Answering that question gives us a basis for
challenging those hypotheses.

If you kick a ball,
you cause that
ball to move - it
wouldn’t have
moved in that
moment if you
had not applied
the force of your
foot to it. You
don’t cause users
to do things on an
app the same
way you cause a
ball to move.

23



We make decisions about what and how to
message based on users' adjusted
personalization scores, which uses all of the
safeguards and mitigating strategies discussed
in the previous section.  We go through a pretty
involved process of combinatorial optimization
to make sure we balance the desire to give users
their preferences with the need to keep learning
about those preferences.

If we just picked everyone’s top-scoring item as
the winner, it’s very possible that a bunch of
users who were all very similar (in terms of their
attributes and past behavior) would get the
same assignment. That would deprive us of the
ability to continue learning about that group’s
preferences (because we can only learn
preferences when we have multiple options to
compare). So we take groups of similar users,
and figure out when someone’s second or third
preference is still good enough that by giving it
to them, we can give other people their first
preferences, and therefore still maintain a
situation where we have multiple preferences at
play.

All that being said, there is always, necessarily, a
pretty strong relationship between the
magnitude of a user’s personalization score and
the messaging choice we assign to them. Their
highest score might be quite low in absolute
terms - we do see users who show no marked
preference for any day of the week or any time
of day - but their assignment will tend to
correspond to one of the highest scores they
personally happen to have.

We don’t just pick
the best score for
each user: e.g. “we
have to decide
what day of the
week to message
them and their
highest score is
for Thursday so
we’ll send them a
message on
Thursday”.

24

https://en.wikipedia.org/wiki/Combinatorial_optimization


Divide messaged users into two groups:
those who did an action (meaning they
triggered a particular app event) after they
were messaged, and those who didn't.
Deciding how long to monitor a user's
activity after a message is a tricky issue. We
monitor for several days, but weight activity
that happens within minutes or hours of the
message much more highly.
For each group, compose an empirical
distribution representing the personalization
scores used to make a particular messaging
decision. So if we're looking at lift from
timing choices, we'll look at the
personalization score we used to decide to
send a particular user a notification at, say,
Monday at 9:00am rather than Wednesday at
3:00pm.
Estimate the percent of the distribution of
those who did the action that exceeds the
distribution of those who didn't do the
action. This is essentially the probability that
a random draw from the did-the-thing
distribution is higher than a random draw
from the didn't-do-the-thing distribution.
This is the probability that successful
messages were based on better-quality
decisions than unsuccessful messages. 
We can convert that probability to an odds
ratio - the number of successes based on
good decisions relative to the number of
successes based on bad decisions. Subtract
one from that, and we get the percent
increase in successes that resulted from
good decisions. That's the lift. 

This relationship between previous score and
subsequent assignment gives us a basis for
calculating lift:

1.

2.

3.

4.

25

The more a user
does something
directly related
to our customer’s
goals, and the
sooner they do it
relative to when
we message
them, the higher
their weight is. 



If personalization score makes no difference at
all in getting users to act, then the two measures
will be roughly the same, so the lift will hover
right around 0.0%. Essentially, instead of picking
specific users and saying “we influenced these”,
we compare those who did the thing we wanted
them to do to those who didn't do the thing, and
estimate the extent to which our personalization
scores explain the difference between the two
groups. This is what that looked like for a few
weeks for one of our customers:

26

We would expect
0% lift if we
randomly
assigned
personalization
scores.

The lift was always positive, even for the first
week shown, which was only one week after
we started messaging users and reflected the
first week we tried to learn about these users.

A couple things to note:



27

The two kinds of
lift don’t move in
lock-step.
Improving
general app
engagement
doesn’t
necessarily result
in improving the
specific goals the
customer laid out,
and improving
goal achievement
doesn’t
necessarily
correspond to
better general
engagement.

Goal achievement lift was always lower than
general engagement lift, which isn’t
surprising since it’s a higher bar to meet.

Keep in mind that these lift numbers are based
on personalization scores that we used to make
assignments before we knew how the user was
going to act. We learned during week 0,
calculated personalization scores and made an
assignment based on that score at the
beginning of week 1, observed what users
actually did at the end of week 1, and then
calculated the lift at the beginning of week 2. So
there isn’t a way for us to stack this deck - we
didn’t know what was going to happen at the
time we used the personalization scores to make
assignments.

USING LIFT TO TEST
HYPOTHESES

Random score. If lift based on randomly
assigned scores is greater than or equal to
the lift based on our personalization scores,
then our model doesn’t actually work. 

Baseline probability. If lift based on the
baseline predictions from our model is
greater than or equal to lift based on our
personalization scores, then we just
predicted which users were likely to act,
rather than actually influencing them.

We can use our lift metric to decide how well
we’re doing at refuting or mitigating all of those
alternative hypotheses we listed earlier:



28

Target probability and base score. If our lift
based on target probability is greater than or
equal to the lift based on base score, then the
fact that we messaged people matters more
than the specific details of the notification.

Uninflated personalization score. If the
uninflated personalization score is greater
than or equal to the lift based on
personalization scores, then we’re essentially
segmenting instead of personalizing.

Targeted engagement. If our general
engagement lift outpaces our targeted
engagement lift relative to the other metrics
I’ve listed here, then that means we’re
influencing general engagement but not
necessarily honoring our customer’s
priorities.

Here’s how all that works out for general
engagement lift:



29

And here’s how it looks for targeted engagement
lift:

The lift based on random scores is
consistently around 0%, which is what we
expected, which means our lift metric works
the way it is supposed to - it’s reasonably
well-calibrated. This metric is also quite a bit
less than the lift based on personalization
scores, so it’s a strong refutation of alternative
hypothesis #1.

Lift based on baseline probability is not only
much less than lift based on personalization
score - it’s just a little bit higher than lift
based on random noise. So this is a strong
refutation of alternative hypothesis #2.

Several things to notice:



30

Target probability is usually greater than base
score for general engagement lift, and is
often above base score for targeted
engagement lift. That means we can’t refute
alternative hypothesis #3 - that it’s the fact of
messaging that matters more than the
details of this message.

The uninflated personalization score is
consistently lower than the full individualized
personalization score, so it’s at least a
moderate refutation of hypothesis #4.

The differences between lift based on
personalization scores and lift based on other
metrics is more consistent and pronounced
for targeted engagement than it is for
general engagement. That’s at least
moderate refutation of alternative hypothesis
#5.

Those are strong results. We’d like to see more
definitive refutation of alternative hypotheses #4
and #5, and we don’t have the data yet to reach a
conclusion about alternative hypothesis #3 (we
always have our customers start by optimizing
timing because the only way to tell if your
message was right is if you’re reasonably sure
you at least sent it at the right time). We were
frankly a little surprised that our general
engagement lift looked so good, given that that
wasn’t ever our focus. 

After two weeks of learning, we’re able to provide
our customers with lift that tends to hover in the
range of 100% to 200%. That’s powerful.

The learning that
produced the data
here focused
solely on message
timing - we
weren’t
systematically
managing
message content
for this customer
at this particular
point - so this
result is not
surprising.



31

Maybe this is
because people
are most familiar
with the A/B
testing paradigm
(and the
analogous null-
hypothesis
significance
testing paradigm
in statistics).

WE ONLY NEED TO BE
RIGHT ENOUGH.
One last point about all of our learning systems.
People often seem to think of results of a test as
things that you have to be prepared to live with
for a long time. So you have two ideas for your
landing page, you implement both, run an A/B
test, and pick the winner and take the loser
down.

That is living so very far below your means.

Information about bandit algorithms has not
penetrated into business-world consciousness
nearly as far as A/B tests have, and contextual
bandits have made even less headway. These
alternatives operate on the very simple principle
that you should hedge bets instead of picking
winners. The only reason it makes sense to run a
test and simply live with the result going
forward is if you can’t afford to do it in a better
way.

We don’t need our model to be right forever. In
most cases, we need it to be right for a week - at
that point, we’ll have sent more notifications,
learned new preferences, and updated our
personalization scores. The “right” answer today
will almost certainly be wrong later, and the
“wrong” answer today is probably right for some
users. There’s no reason to ignore those
challenges. With a system that can keep
learning, automatically, without you needing to
make manual decisions about every little result,
you can adapt as fast as your users do.

How to hedge a
bet: if A works
twice as well as
B, show A twice
as often but keep
showing B,
because there
may be a
relatively small
subset of users
who really prefer
B, or because A
might be the
preference right
now but B will be
the preference
next month.

https://en.wikipedia.org/wiki/Multi-armed_bandit
https://towardsdatascience.com/contextual-bandits-and-reinforcement-learning-6bdfeaece72a


aampe


