" CLASSIQ

CREATE,ANALYZE
AND OPTIMIZE A
SIMPLE QUANTUM
CIRCUIT

Application note | June 2021

June 2021

Introduction

State preparation - the process of loading a known probability mass function or
setting a quantum system to a specific known state - is a critical part of quantum
algorithm development. It is also essential in hybrid classical/quantum algorithms
that perform some quantum calculation, which needs to start in a known state,
measure the state, perform a classical computation, and repeat this process as
necessary, using different starting states for each iteration.

This tutorial will show how to build, analyze, and optimize a simple state

preparation circuit using the Classiqg Quantum Algorithm Design platform.
Perform the following steps:

Open VSCode

VSCode is the environment in which you will create, synthesize and analyze
quantum models.

sion-quickstart.md

> OUTLINE

®@0A0

Create, Analyze and Optimize a Simple Quantum Circuit

"eCLASSIQ

June 2021

If this is your first time using Classiq, find the Classiq extension and install it:

Extension: Classiq — classiq

= Extension: Classiq X

Classiq cissiacissia
Classiq v0.0.1

v INGTA

Classiq 001
Enabling development of quantum c... Enabling development of quantum circuits.
Classiq

Disable ™ Uninstall &3 T
alar
Makes it easy to create, manage, an.
Microsoft i B
h 2 Details ature Contributions Changelog
ESLint 2.1.20
Integrates ESLint JavaScript into VS..

Dirk Baeumer & classiq README

Classiq enables the development of quantum algortihms. All you need to do is create a json file with your constraints (see example), and run
generation command.

To run a command press: command + shift + P --> enter command --> press Enter
Schema Example

{ "qubits_count™: 0, "min_depth": 0, "max_depth": 0, "gate_count_constraints": { "GateNameCaptialLetters": { "lower_bound": 0, "upper_bound"
0}), “cx_slide_entangler": { “slide_targets": [0], “slide_first_control": 0 }, “phase_cx_slide_entangler": { "slide_targets": [0],
"slide_first_control®: 0, "slide_phases": { "distribution_typs": "uniform", “total_phase": 0 } }, "phase_slide": { "slide_targets": [0],
*slide_phases": { “distribution_type®: “uniform®, “total_phase": 0} }, “state_preparation": { “probabilities": [0], “depth": { “lower_bound": 0,
"upper_bound": 0 }, "cx_count": { "lower_bound": 0, "upper_bound": 0 }, "error_metric*: "string", "error_value": { "lower_bound": 0,
RECOMMENDED "upper_bound™: 0} } }
p Remote - Containers 8
Open any folder or repository inside...
Microsoft Install

Requirements

- If you have any req; ies, add a section describing those and how to install and configure them.
Cloud Code

Makes developing with Kubernetes .. Extension Settings
Google Cloud Install

AT Include if your extension adds any VS Code settings through the contributes. configuration extension point
Vim emulation for Visual Studio Code
s troran For examole:

®oAn0

Login

Press Ctrl+Shift+P on PC or on {13d8P Mac to show the command palette and
choose “Cadmium: login to cadmium”. This will take you to a Web page in which
you will enter your login credentials.

® ¢ classiq

foj EXPLORER N

v CLASSIQ Cadmium: Helo
> wscode ‘Cadmium: Login to Cadmium
> classiq STien COlliaa. stan code cor
~ examples Add Browser Breakpoint
{} a2-b2.clsq Add Function Breakpoint
{} load-probs.clsq Azure Container Registry: Build Image in Azure...
{} MHT_for_hybrid.clsq Azure Container Registry: Create Registry.
{} MHT.clsq Azure Container Registry: Delete Registry...
{} TSP.clsq Azure Container Registry: Delete Repository...
> resources Azure Container Registry: Open in Portal
> src Azure Container Registry: Run as Task in Azure..
} .eslintrc.json Azure Container Registry: Run Task
gitignare Azure Container Registry: Untag Image...
vscodeignore Azure Container Regisiry: View Logs
CHANGELOG.md
openapitools json
package-lock.json
package.json
README.md
tsconfig.json
vsc-extension-quickstart. md

> OUTLINE

3 Create, Analyze and Optimize a Simple Quantum Circuit N =CLASSI Q

June 2021

Open the example file

Open “load-probs.cldqg” file:

Ioad-probs.clsq — classiq

EXPLORER) load-probs.clsq

- CLASSIQ

.12, .83, 0.061},

> OUTLINE
@0A0 Ln1,Col1 Spaces:4 UTF-8 LF JSON withComments & [2

In case you don't have it in your environments, here is the content of this file:

"qubits_count": 4,
"min_depth": 1,
"max_depth": 87,
"segments": [{
"function": "StatePreparation”,
"function_params": {
"probabilities": {"pmf":[@.05, ©.11, ©0.13, 0.23, 0.27, 0.12,
0.03, 0.06]},
"depth_range": {"lower_bound": 1, "upper_bound": 87},
"error_metric": {"KL": {"upper_bound": ©0.01}}

3]

The desired probability mass function (“pmf:” statement) has eight elements, so it
is aiming to prepare the state of three qubits (since 23 = 8)

"eCLASSIQ

Create, Analyze and Optimize a Simple Quantum Circuit

June 2021

Generate the circuit

From the command palette, select “Cadmium: generate quantum circuit”

Ioad-probs.clsq — classiq

EXPLORER {} load-probs.cls: 5|

~ CLASSIQ examples > {J

> wscode] Cadmium: Generate Quantum Circuit
> classiq Y s ialn
~ examples Shell Command: Install ‘code’' command in PATH
{} a2-b2.clsq "sec Add Browser Breakpoint
{} load-probs.clsq Add Cursor Above
{} MHT_for_hybrid.clsq Add Cursor Below
{} MHT.clsq Add Cursors To Bottom
{} TSPclsq Add Cursors to Line Ends
> resources Add Cursors To Top
> sre Add Function Breakpoint
{} .eslintrc.json Add Line Comment
qgitignore Add Selection To Next Find Match
vscodeignore Add Selection To Previous Find Match
CHANGELOG.md
openapitools.json
package-lock.json
package.json
README.md
tsconfig.json
vsc-extension-quickstart.md

> OUTLINE

You will be prompted to enter a name for the output, such as test. After a few
seconds, you will see a screen like this:

circuit.qasm — classiq
EXPLORER {} Joad- . F - £ circuit.gasm X m

~ CLASSIQ examples > {} load-probs. var » folders > 4s > 1rg_vv7x07q6z1snvkn Dm0000gn > 1 var > folders > 4s > 1rg_wv7x07q6z1snvknr§00m0000gn
> wscode i 1 // Generated by Classig.

“qubits_count": 4, // Creation timestamp: 2021-85-28T21

“min_depth . // Random seed: 4845851656

"max_depth ¥l

{} a2-b2.clsq “segments": [{ OPENQASM 2.0;

{} load-probs.clsq “function": "StatePrepar include “qelibl.inc";

{} MHT_for_hybrid.clsq “function_params" gate statepreparation_@bktuj q@,ql,c

"probabiliti "pmf" qreg ql4];

“depth_range’ | creg cl4];

{} TSPclsg “error_metric": {"KL": statepreparation_@bktuj ql31,ql2],ql

> resources barrier gl0],ql1],ql21,ql3];

> sro measure ql8] —> cl@];

measure q[1] -> c[1];

measure q[2] - cl2];

measure q[3] -> c[3];

> classiq

« examples
{} MHT.clsq

«eslintrc.json

gitignore

vscodeignore
CHANGELOG.md
openapitools.js
package-lock.json
package.json

README.md

tsconfig.json
vsc-extension-quickstart.md

> OUTLINE
@0A0 Ln1, Col1 Spaces:4 UTF-8 LF PlainText & (2

This view has three main parts:
Source code: this is the left panel, and it shows the source code of the model that
we loaded

5 Create, Analyze and Optimize a Simple Quantum Circuit N =CLASSI Q

June 2021

Quantum circuit: in this middle panel, we see the quantum circuit generated
by Classiq. It fulfills the required behavior of the model and meets the desired
constraints. In this case, the circuit looks like this:

As you can see, this circuit uses four qubits which is what we defined in the model.

qubits count": 4,

Qasm code: the panel on the right shows Qasm code that fulfills this circuit:

// Generated by Classiq.
// Creation timestamp: 2021-05-28T21:05:45.641814+00:00
// Random seed: 4045851656

OPENQASM 2.0;
include "qgelibl.inc";

gate statepreparation_ebktuj g0,q1,92,q3 { h g0; h gq1; h g2; ry(3.1816033)
gq2; cry(3.8167242) g2,ql; x gq2; cry(2.7468015) gq2,ql; x ql; X g2; ccx
ql,q2,q93; cry(3.5363838) g3,90; ccx gl1,q92,93; x gql; x g2; ccx ql1,q92,93;
cry(2.8601126) g3,q90; ccx gq1,92,q93; x ql; x g2; x g2; ccx gq1,92,q93;
cry(2.7571959) g3,90; ccx gql1,q92,93; x ql; x q2; }

qreg q[4];

creg c[4];

statepreparation_obktuj q[3],q[2],q[1],q[@];

barrier q[@],q[1],q[2],q[3];

measure q[0] -> c[@];

measure q[1] -> c[1];

measure q[2] -> c[2];

measure q[3] -> c[3];

That's it! You've generated a fully working quantum circuit for state preparation

"eCLASSIQ

Create, Analyze and Optimize a Simple Quantum Circuit

June 2021

Test the circuit

To check that the circuit met our requirements, we'll use the IBM Quantum Experience
site.

Login into the quantum computing site at http://quantum-computing.ibm.com (you
can create a free account if you don’t have one) and then launch the IBM Quantum
Composer

< C & quantum-computing.ibm.com

IEM Quantum

Welcome

Te- =

iy >

Graphically build circuits with Develop quantum experiments in

IBM Quantum Composer IBM Quantum Lab

Launch Composer Launch Lab

Now copy the Qasm code generated by Classiq into the rightmost panel of the IBM
Quantum Composer

|
Create, Analyze and Optimize a Simple Quantum Circuit N =CLASSI Q

June 2021

| [0 Composer files File Edit Inspect View Share Setup and run

dfiles ol Nowiile + Testing the Classiq output ryzlzatipns cand L5

B s HEEHHONEEEEEEEE o | oo -
z

o

I OEEDEEEEE -
i > dd . .
| 5T Testing the Classiqo... afew seconds ago A (i i Open in Quantum Lab
3 Grover N=2 A=11 3 manths ago i
4 -~ z
21 Bell state + zz-measu 3 months ago z .
9 A 2
1 Bit flip 3 manths ago : q

OPENQASM 2.0;

6 include "gelibl.inc";

7 gate statepreparation_calgsl
90,91,92,93 { h q@; h q1; h q2;
Ty(3.1816033) q2;

=
6] 16060

5 v v v v ¥ cry(3.8167242) q2,91; x q2;
[} 1 2 3 a cry(2.7468015) q2,q1; x ql; x
a2; ccx ql,92,93;

cry(3.5363838) q3,q0; c
q1,92,93; x q1; x q2; ccx
q1,42,93; cry(2.8601126) q3,q0;
cex q1,42,43; x ql; x q2; x q2;
cex q1,42,q3; cry(2.7571959)
Probabilities @ i Statevector ©® 43,90; ccx q1,2,q3; x ql; x
a2; }
qreg q[5];
9 creg c[5];
10 1ry(1.885) g[O];
0.6 11 statepreparation_calgsl
q[41,q[3],q[2],q[1];
60 ? 12 barrier
qlel.al1],ql2],q[3],q[4];
13 measure

X

Amplitude

Probability (%)

14 measure

15 measure

16 measure

17 measure

Computational basis states

n/2

a

Output state

[l Phass Jll 0

[0+03, 0+03, 0+03,
0+03, 0+03, 040 ...

ani2

Computational basis states

Show more v

The ‘measure’ lines at the end of the code force a measurement, but if we want to see
the probability distribution, we can remove them, where we will get something like:

100
80
g 60
>
x
=
(o]
Haj
[e]
o
& 40
20 I
0 T T I T T T l T - T T T
o ~ o ~ o ~ S ~ o ~ S ~ o ~ S ~
S S ~ ~ S S ~) S S N N S S N)
s S S S N N N S N N NS N e e e <

Computational basis states

Create, Analyze and Optimize a Simple Quantum Circuit =CLASSI Q

June 2021

Note: To see a ‘bell-shaped’ distribution sorted in the proper order, you might need
to add a swap command such as

swap q[1],q[3];

Congratulations!

You've just completed a working quantum circuit with the Classiq platform.
What else can we learn about this circuit and how can we change it?

Analyzing the circuit

You can learn important attributes about the circuit by analyzing it. Once a circuit
has is ready, click on the Qasm code (rightmost panel) and then select “Analyze
Quantum Circuit” from the command palette.

circuit.gasm — classig
S v | e x m -

{} lo Ccadmium: Login to Cadmium)000gn

Cadmium: Analyze Quantum Circuit 153
ts_count) /r eation time 821-85-28T23
_coun Cadmium: Help z f eation time : 71 B85-28T
3 // Random seed: 1237791240
Shell Command ‘code’ command in PATH

Add Browser Breakpoint

To Bottom

Line Ends
Top
Add Function Breakpoint
Add Line Comment
Add Selection To Next Find Match

Add Selection To Previous Find Match

Ln3, Col 24 Spaces:4 UTF-8 LF PlainText & (2

The result of the analysis will look something like this:

H
B =CLASSIQ

Create, Analyze and Optimize a Simple Quantum Circuit

June 2021

analyzed_circuit.png — classiq

7e
nts": [{
function" C i
function_| “multi_qubit_gates_c
“probabilit 2 “non_entangled_subcircuits_

“depth_rang

"found_patterns": []
h

“"pattern_recognition": {

"circuit": {
"closed_circuit_gasm": "
}
}

Whole Image 527x367 15.07KB & [*

Let’s focus on the analysis result on the right side. You can see that the analyzer
provided many interesting details, such as the depth of the circuit, the number of
gates being used, and the types of gates that were chosen for this circuit. These
are highlighted in the capture below

1 {

2 "input_properties": {

3 "depth": 2,

4 "auxiliary_qubits": @,

5 "classical_bits": 4,

6 "gates_count": 5,

7 "multi_gubit_gates_count": 1,

8 “"non_entangled_subcircuits_count": 1
9 }

10 "native_properties": {

11 "depth™: 78,

12 "auxiliary_qubits": @,

13 "classical_bits": 4,

14 "gates_count": 115,

15 "multi_gqubit_gates_count": 46,

16 “"non_entangled_subcircuits_count": 1,
17 "native_gates": |[

18 Hex™

"eCLASSIQ

10 Create, Analyze and Optimize a Simple Quantum Circuit

June 2021

19 "u3"

20]

21 P

22 "pattern_analysis": {

23 "pattern_matching": {
24 “found_patterns": []
25 },

26 "pattern_recognition": {
27 “found_patterns": []
28 },

29 “"circuit": {

30 “closed_circuit_gasm": "OPENQASM 2.@;\ninclude \"gelibl.inc\";\ngate st
31 }

32 }

33 }

Modifying the code

In our model, you might remember that we defined the desired states and defined
the desired accuracy that we expect of the state preparation. In this case -
highlighted below - we asked for 1% accuracy.

oy 1

2 "qubits_count": 4,

3 "min_depth": 1,

4 "max_depth": 87,

5 "segments": [{

6 "function": "StatePreparation",

7 "function_params": {

8 "probabilities": {"pmf":[0.05, 0.11, .13, .23, 0.27, 0.12, 0.03, 0.06]},
g "depth_range": {"lower_bound": 1, "upper_bound": 87},
0 "error_metric": {"KL": {"upper_bound": @.01}}

1 }

2 }

3}

But what if we need greater accuracy? For this, we can try changing “upper bound”
parameter of “error_metric” from its current value of 0.01 to something else, such
as 0.001.

"eCLASSIQ

Create, Analyze and Optimize a Simple Quantum Circuit

June 2021

Try it! Change the accuracy and then regenerate the circuit. Interestingly, you'll get
an error message (in the bottom right corner of the screen)

Overcoming a constraint

What just happened?

The circuit generator looks at all the constraints given in the model, and one of
the constraints was the maximum depth of the circuit. When the accuracy is 0.01,
the analyzer revealed to us that the circuit depth was 78. But to reach greater
accuracy, we need greater depth and the current model set 87 as the upper_bound
of the depth, which might not be enough. The upper limit might be a limitation of
the target hardware, but if this limitation is arbitrary, let’s increase the depth to
150 and see what happens.

"eCLASSIQ

12 Create, Analyze and Optimize a Simple Quantum Circuit

June 2021

This time, the circuit generation was successful:

@ oxeome < 4} loac RS circuit.png X
B

cLassiQ

8.11, 0.1

_circuit.png
> a_2021-05-

07Z
2939.000Z

> OUTLINE
@0A0 23% 2210x953 5114KB & (2

Note: | closed the Qasm panel just so that we can see the circuit better.

Analyze the circuit once again, and now we see that the resulting circuit has a
depth of 100, which is within the bounds that we set

1 {

2 “input_proferties": {

3 “"depth™: 2,

4 “"auxiliary_qubits": @,

5 “"classical_bits": 4,

6 "gates_count": 5,

7 “"multi_qubit_gates_count™: 1,

8 “"non_entangled_subcircuits_count™: 1
9 Y,

10 "native_properties": {

11 "depth™: 1@,

12 “"auxiliary_qubits™: @,

13 “"classical_bits": 4,

14 “"gates_count": 146,

15 "multi_qubit_gates_count™: 60,

16 "non_entangled_subcircuits_count™: 1,
17 "native_gates": [

18 "cx",

19 “u3"

Try another optimization

Perhaps even with the lower accuracy, this circuit has too many gates. To explore
the alternatives, change the accuracy to 0.1 and see what happens.

"eCLASSIQ

Create, Analyze and Optimize a Simple Quantum Circuit

June 2021

Congratulations!

In this tutorial, you successfully analyzed a circuit, changed it, and learned to
overcome some constraints. We hope you had a chance to appreciate how easy

it is to set constraints, explore alternatives, and quickly get to a working quantum
circuit with the Classiq platform.

'CLASSIQ

REVOLUTIONIZING
HE DEVELOPMENT OF
QUANTUM SOFTWARE

analyzed a circuit, changed it, and

learned to overcome some constraints.

We hope you had a chance to D E M O T O D AY
appreciate how easy it is to set
constraints, explore alternatives, and . .
quickly get to a working quantum he”O@ClaSS'q"O
circuit with the Classiq platform. www.classiq.io

In this tutorial, you successfully R E O U E S T A .

