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Introduction 
Optimization problems are found in numerous industries. Here are just a few 
examples: 
 

• Portfolio optimization. A money manager has a certain amount of money to 
invest. What is the optimal allocation of these funds? 

• Route optimization. A FedEx truck needs to deliver 50 packages. What is the 
optimal route to deliver the packages? 

• Airport security. An airport wishes to install security cameras to watch over 
all corners in the airport. What is the optimal arrangement of cameras that 
achieves this? 

 
Each optimization has some definition of what constitutes an optimal solution. For 
instance, the money manager might seek the highest return with the lowest risk. The 
FedEx truck might want to complete the deliveries in the minimum amount of time. 
The airport might wish to cover all corridors with the smallest number of cameras.  
 
The definition of what constitutes an optimal solution might be different from one 
company to another. Instead of the shortest delivery time, another company might 
choose the lowest-cost route, considering fuel and toll charges. Another might 
choose the route that generates the lowest carbon footprint.  
 
Each optimization might also be done under a different set of constraints. The 
money manager, for instance, can’t invest more than 5% of her portfolio in any single 
stock. The delivery truck might not be able to travel on certain residential roads 
before 8 AM, and so forth. An optimization problem that has constraints is 
sometimes called a “Constraint Optimization Problem” 
 
It’s easy to see how optimization problems can become exceptionally complex. The 
FedEx truck with 50 stops has about 30 vigintillion (that’s 3 x 1064) possible options. 
Even if the optimization can be completed in a reasonable amount of time, it might 
need to be redone at a moment’s notice: There is a major traffic jam on the route, 
the price of an asset has dropped making it more attractive for purchase, etc. 
 
But when problems are hard, solving them could provide a big reward. A logistics 
company that saves 15% on fuel costs because of optimized routing can increase its 
profits or grow its market share. An optimal portfolio is good for the customer, the 
portfolio manager, and her employer. 
 
The difficulty of solving these problems and the payoff of getting the best answers 
are key reasons that companies are considering quantum computing. To put this in a 
financial context, the Boston Consulting Group recently estimated that there is 
between $110-210B of value that can be unlocked in solving optimization problems 
using quantum computers.  
 
 

  

https://www.bcg.com/en-us/publications/2021/building-quantum-advantage
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Integer Linear Program Optimization 
Problems 
 
Integer Linear Program (ILP) is a class of optimization problems. The problem 
statement is to find an optimal choice by combining objects from a finite set. One 
such example is the Knapsack problem. 
 
Knapsack. The story: a boy wishes to go on a hike with a knapsack of a known size. 
He can select which items to pack in the knapsack. Each item has a value and a size 
associated with it. What is the best combination that maximizes the value of the 
items in the knapsack while making sure that the aggregate size of the items does 
not exceed the size of the knapsack?   
 
A production scheduling optimization problem might be considered a knapsack 
problem: pick the right production schedule (“right” could be, for instance, the lowest 
inventory holding costs while avoiding stock-outs) without exceeding the available 
production capacity. 
 
Additional problems that often fall under the ILP category include network flows, 
assignment problems, and more. 

 
Graph Optimization Problems 
 

Another common class of optimizations problems is graph optimization problems. 
One such example is the traveling 
salesperson (TSP) problem: 
 
Traveling salesperson. The story: a 
salesperson needs to visit a certain set 
of customers in a day, perhaps 
returning to his home at the end of the 
day. What is the optimal route she 
should take? Obviously, the route 
optimization problem described earlier 
is such a problem. For instance, the 
image on the right1 shows the shortest 
possible loop that connects all red dots.  
 

 
 
 
1  By Xypron - Own work, Public Domain, 

https://commons.wikimedia.org/w/index.php?curid=10645665 
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Another example is the vertex cover problem: 
 
A vertex cover of a graph is the set of 
vertices that include at least one 
vertex (endpoint of every edge) of the 
graph. This would correspond to the 
airport security problem we described 
above. The airport would be described 
as a connected graph where each 
edge is a corridor. We can place 
cameras at either end of the corridor 
(the vertex of the graph). Thus, finding 
the vertex cover would provide us 
with the minimal set of vertices (or 
cameras) that are needed to cover all 
the corners of the airport. 
 
For instance, if the airport is described in the graph on the right, if we place four 
cameras in the corners painted in yellow, we would be able to cover the largest 
possible number of corners. If we wanted to cover additional corners, we would 
need to add cameras. 
 

 

Enter Quantum Computing 
 
Two fundamental properties of quantum - superposition and entanglement - allow 
quantum computers to examine numerous options simultaneously. Once an 
optimization problem can be translated into a quantum circuit, quantum computers 
can look for a solution. To determine which solution is better and which is worse, 
quantum scientists create an “Oracle” which assigns a quantitative score to each 
potential solution. The circuit then works to find a solution with the lowest score. 

The Classiq Approach 
When we created our optimization libraries, our goal was to allow those that are not 
experts in quantum computing to use quantum algorithms for their optimization 
problems. 
 
To solve these optimization problems, we used the QAOA (Quantum Approximate 
Optimization Algorithm) algorithm, one of the main algorithms for NISQ-era 
quantum computing. We will not describe the QAOA here, but good places to read 
about it are here, here and here. 
 
Here are a few examples of solving optimization problems with Classiq: 
 
  

https://arxiv.org/abs/1411.4028
https://arxiv.org/pdf/1709.03489.pdf
https://www.nature.com/articles/s41567-020-01105-y
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Graph Optimization: Maximal 
Independent Set 
 
The Maximal Independent Set (MIS) is the largest set of vertices such that no two 
vertices in the set are connected by an edge (and therefore not deemed to be 
independent). 
 
Here is an example that can be modeled as a maximal independent set: 
 

A college is holding a day of performing arts concerts for its students. Each student 
chooses events of interest from the full list of concerts. The college wants to 
schedule the events in 1-hour time slots such that every student can visit all their 
chosen concerts without conflict.  

 
A possible embedding of this problem into MIS problem is the following: Construct a 
graph in which each concert is represented by a vertex, and two vertices are 
connected with an edge if at least one student chose both events 
 
Here is the Classiq code that implements finding such MIS on various graphs: 
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The key steps are as follows: 

• Set up the graph. In this code sample, we use the networkx package to create 
a star topology with 5 nodes. Below, we show several runs from this package, 
including star, Turan, LCF, and more. 

• Calculate the adjacency matrix, a square matrix showing whether pairs of 
vertices are adjacent or not  

• Set up the VQE preferences: number of shots, maximum iterations in each 
shot 

• Create the cost function for each graph. As written, the function discourages 
(gives a higher value) for graphs where the assigned variables for two adjacent 
vertices are 1  

• Run the VQE optimization using the Maximum Independent Set model 
• Report the results. We see that in this case, the most common solution is the 

one that the maximum independent set does not include the center (the first 
index in the graph) but does include all the nodes. 

 
  

https://networkx.org/
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Here are the solutions for various graph types: 
 
Graph type (using networkx library) Minimum Independent Set solution2 
 
star_graph(5).  
 
The solution shows a set of five 
selected vertices (yellow dots) 
arranged in such a way that no two 
are adjacent to each other and that 
adding any additional yellow vertex 
to the set (in this case, in the middle 
of the star) would violate the “no 
adjacency” rule. 

 

 
  

turan_graph(10, 3)  

  
LCF_graph(12, [3, -3], 5) 

  

 
 
 
2  We used the networkx library to create these graphs from the solutions of the quantum circuit 
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chvatal_graph() 
Again, note that turning any of the 
purple dots to yellow would violate 
the “no adjacency” rule for the 
yellow dots.  

  
heawood_graph() 

  
 
Here is the resultant quantum circuit for the 5-node star, presented after 
simplification using the Classiq ‘analyzer’ tool. The circuit uses six qubits because the 
graph has six vertices. Note: text annotations were added manually for the purpose 
of this application note: 
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Graph Optimization: Max Vertex Cover 
The Max Vertex Cover is a similar problem (refer to the previous section). Given a 
graph (e.g., the airport structure) and a constant number K (e.g., the number of 
available cameras) the goal is to find the best K vertices that give the maximum 
coverage for the graph. An edge (e.g., corridor) would be called ‘covered’ if at least of 
its vertices is selected (e.g., has a camera). The setup is similar, except for the cost 
function:   
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Here are the results. In this case, yellow indicates that a camera should be placed on 
that vertex: 
 
Graph type (using networkx library) Max Vertex Cover 
  
star_graph(5), k=1 
 
In this case, if we have just a single 
camera, placing it in the middle 
would provide the best coverage as 
all five edges would be covered. 

  
turan_graph(10, 3) ,  k=3 

  
LCF_graph(12, [3, -3], 5) ,  k=4   
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chvatal_graph() ,  k=5 

 

networkx.heawood_graph(), k=5 

 
  

 

And here is the analyzed quantum circuit: 
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Summary 
 
Optimization is a powerful technique that helps numerous markets. The Classiq 
platform helps companies harness the power of quantum computing to solve 
difficult optimization problems. 
 

 
 
 
 

REVOLUTIONIZING  
THE DEVELOPMENT OF 
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In this note, you learned about 
optimization using quantum circuits and 
using the Classiq platform. We hope you 
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