
Growing Embedded
Applications Organically with

Ceedling and Friends
Greg Williams

Embedded Development...
Limited Memory

Limited Processing Power

Language Limitations

Short Timelines

Growing Complexity

Non-Standard Hardware

Is HARD

What Can We Do?
Give up?

Pray?

Complain?

Get a new job?!?

Get better!

Be responsible!

NO SILVER BULLET

Testing Success

Smart and Capable People

Good Process

Tools to Support Good People and Good
Process

Validation

Need to verify we have done the right thing

What is the right thing?

How do we check it?

Will it always work?

Is it worth it?

But it takes to much F!$%#$G time!!!

Manual Validation
Real Deal / Simulation

Stimulate conditions / Modify state

Run to breakpoint

Check resultant state

Tedious

Painful

Usually do it ONCE

Automation
Buy a robot!!!

Create test plans

Buy fancy hardware

Spend a lot of time figuring out what and
how

How can we automate everything??

$$$$$$$

Unit Testing
Focus on testing individual modules and
functions

Verify that a given scenario produces the
correct result

Ensures building blocks perform specifc
operations according to their design

Drives toward proper encapsulation

Design can evolve naturally...

Unit Testing
Automatable

Provide living documentation of design

Instant regression testing

Facilitates refactoring

Eliminate dead code

Eliminates: “Don’t fix it if it ain’t broke” or
“We’ll fix that next time we touch it”

Ahhhhhhhhhhh.....

What is TDD?

What do we mean by Test-Driven
Development?

Mindset of Maximizing Testability

First executable code is TEST code

Write JUST ENOUGH code to satisfy tests

The TDD Cycle

Select a Feature to Implement

Write a Small Test

Execute Test and Watch It Fail

Implement source code to satisfy test

Correct until the tests pass

REPEAT, REPEAT, REPEAT...

Types of Tests
Unit Tests

Exercises a unit of source code

Executes unit in isolation from surroundings

Integration Tests

Same fundamentals as unit tests, but exercises a
group of modules / subsystem

System Tests

Run against full application on target hardware

Exercises behavior that unit/integration tests
cannot

Ideally targeted at validating FEATURES

Benefits of TDD
Tested Software

High Level of Code Coverage

Full Coverage Measured by Coverage Tools

Well-Designed Software

Well-Documented Software

Maintainable Software

Sanity!!!

Shiny Happy People...

Mechanics: Testable Project

source test

source

source

source

source

test

test

test

test

artifact

fixture

fixture

fixture

fixture

fixture

results

PRODUCTION TEST SUITEUNIT TESTS

Where to start...

Project Scope:

Measure temperature (thermistor voltage) and
report degrees Celsius once per second over
serial port

Time to plant a Ceedling...
> gem install ceedling
> ceedling new MyProject
Project 'MyProject' created!
 - Tool documentation is located in vendor/ceedling/docs
 - Execute 'rake -T' to view available test & build tasks
> cd MyProject
> rake test:delta

OVERALL UNIT TEST SUMMARY

No tests executed.
>

DONE!

Feature Request / Task

Read Analog to Digital Converter
X times per second

Let’s GO!
Dig through datasheet

ADC_Init()

Setup ADC in proper mode

ADC_Read()

Trigger a conversion and wait for completion

Return the results

Wire it into the system

We still need to time the samples

WAIT!!!

Where do the results go? Hmmmm......

Feature-Driven Development

“We need to read something from and
ADC converter, so let’s write a driver!!”

NOOOOOOOOOOOOOOOOOOO

Leads to cluttered APIs and DEAD CODE!

Focus on what is required NOW, and
implement ONLY THAT

Use a top-down approach, discovering needs
along the way

Feature-Driven Development
(continued...)

Software IS features

Customers pay for features, NOT infrastructure

Infrastructure-First => WASTE

Feature-Driven Development

Minimally working system as soon as possible

Build towards feature completion

Tests are a safety net while refactoring

Features yield meaningful progress metrics

Satisfied project managers AND developers

Top-Down Design

Mocks to the rescue!

CMock generates mocks using only header
files (INTERFACES)

The lower levels need not be implemented AT
ALL!!

Leads to easily refactored interfaces prior to
implementation of underlying code

CMock

Creates mocks of modules using only the
header files (interfaces)

Utilizes Ruby to make the magic happen

 Creates helper methods

Verifies interactions with other modules and
libraries

CMock Example
ARGS*	
 ParseStuff(char*	
 Cmd);
void	
 	
 HandleNeatFeatures(NEAT_FEATURE_T	
 NeatFeature);

int	
 	
 ParseStuff(char*	
 Cmd);
void	
 ParseStuff_ExpectAndReturn(char*	
 Cmd,	
 int	
 toReturn);
void	
 ParseStuff_IgnoreAndReturn(int	
 toReturn);
void	
 ParseStuff_StubAndCallback(CMOCK_ParseStuff_CALLBACK	
 Callback);
	

void	
 HandleNeatFeatures(NEAT_FEATURE_T*	
 NeatFeature);
void	
 HandleNeatFeatures_Expect(NEAT_FEATURE_T*	
 NeatFeature);
void	
 HandleNeatFeatures_ExpectWithArrays(NEAT_FEATURE_T*	
 NeatFeature,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 NeatFeature_Depth);
void	
 HandleNeatFeatures_Ignore(void);
void	
 HandleNeatFeatures_StubAndCallback(CMOCK_HandleNeatFeatures_CALLBACK
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Callback);

void	
 test_MyFunc_should_ParseStuffAndCallTheHandlerForNeatFeatures(void)
{
	
 	
 	
 	
 NEAT_FEATURES_T	
 ExpectedFeatures	
 =	
 {	
 1,	
 "NeatStuff"	
 };
	

	
 	
 	
 	
 ParseStuff_ExpectAndReturn("NeatStuff",	
 1);
	
 	
 	
 	
 HandleNeatFeatures_Expect(ExpectedFeatures);
	

	
 	
 	
 	
 //Run	
 Actual	
 Function	
 Under	
 Test
	
 	
 	
 	
 MyFunc("NeatStuff");
}

void	
 MyFunc(char*	
 Command)
{
	
 	
 int	
 ID;
	
 	
 NEAT_FEATURES_T	
 Neat;
	

	
 	
 ID	
 =	
 ParseStuff(Command);
	
 	
 switch(ID)
	
 	
 {
	
 	
 	
 	
 case	
 0:	
 	

	
 	
 	
 	
 	
 	
 HandleStupidFeatures();
	
 	
 	
 	
 	
 	
 break;
	
 	
 	
 	
 case	
 1:
	
 	
 	
 	
 	
 	
 Neat.id	
 =	
 1;
	
 	
 	
 	
 	
 	
 Neat.cmd	
 =	
 Command;
	
 	
 	
 	
 	
 	
 HandleNeatFeatures(Neat);
	
 	
 	
 	
 	
 	
 break;
	
 	
 	
 	
 default:
	
 	
 	
 	
 	
 	
 break;
	
 	
 }
}

Anatomy of a Ceedling Test

void foo(void)
{...}

int bar(char)
{...}

SOURCE(S)

void
test_bar(void)
{
 ASSERT(
 5,
 bar(‘a’));
}

TEST

void main(void)
{
 setUp();
 test_foo();
 tearDown();
}

RUNNER

int foo(int)
{...}

void
foo_Expect(void)
{...}

MOCK(S)

+ + +

=
TEST FIXTURE

EXECUTABLE

int
ASSERT(int, int)
{...}

FRAMEWORK

+

Ceedling Quick Ref
rake -T

List all tasks

rake test:my_module

Test the specified module

Also can specify test, header or source

rake test:all

Test all modules

rake test:delta

Test changes (incremental)

Questions?

