Growing Embedded
Applications Organically with
Ceedling and Friends

Greg Williams



Embedded Development...

@ Limited Memory

@ Limited Processing Power
@ Language Limitations

@ Short Timelines

@ Growing Complexity

@ Non-Standard Hardware

o Is HARD



What Can We Do?

@ Give up?

@ Pray?

@ Complain?

® Get a new job?!?
@ Geft better!

@ Be responsible!



NO SILVER BULLET



Testing Success

@ Smart and Capable People
@ Good Process

@ Tools to Support Good People and Good
Process



Validation

@ Need to verify we have done the right thing
® What is the right thing?

@ How do we check it?

@ Will it always work?

@ Is it worth i1?

@ But it takes to much F!$7%#$G time!!!



Manual Validation

@ Real Deal / Simulation

® Stimulate conditions / Modify state
@ Run to breakpoint

@ Check resultant state

@ Tedious

@ Painful

@ Usually do it ONCE



Automartion

@ Buy a robot!!!
@ Create fest plans
@ Buy fancy hardware

@ Spend a lot of time figuring out what and
how

@ How can we automate everything??

o $53$%%%



Unit Testing

@ Focus on testing individual modules and
functions

@ Verify that a given scenario produces the
correct result

@ Ensures building blocks perform specifc
operations according to their design

@ Drives toward proper encapsulation

@ Design can evolve naturally...



Unit Testing

@ Automatable
@ Provide living documentation of design
@ Instant regression testing
@ Facilitates refactoring
@ Eliminate dead code

@ Eliminates: "Dont fix it if it aint broke” or
*We'll ix that next time we touch it”

@ Ahhhhhhhhhhh.....



What is TDD?

@ What do we mean by Test-Driven
Development?

® Mindset of Maximizing Testability
@ First executable code is TEST code

@ Write JUST ENOUGH code to satisfy tests



The TDD Cycle

@ Select a Feature to Implement

@ Write a Small Test

@ Execute Test and Watch It Fall

@ Implement source code to satisfy fest

@ Correct unftil the tests pass

@ REPEAT, REPEAT, REPEAT...



Types of Tests

@ Unit Tests

@ Exercises a unit of source code

@ Executes unit in isolation from surroundings
@ Integration Tests

@ Same fundamentals as unit tests, but exercises a
group of modules / subsystem

@ System Tests

@ Run against full application on target hardware

@ Exercises behavior that unit/integration tests
cannot

@ Ideally targeted at validating FEATURES



Benefits of TDD

@ Tested Software
@ High Level of Code Coverage
@ Full Coverage Measured by Coverage Tools
@ Well-Designed Software
@ Well-Documented Software
@ Maintainable Software
@ Sanitylll

@ Shiny Happy People...



Mechanics: Testable Project

PRODUCTION UNIT TESTS TEST SUITE

I | { oo |



Where to start...

Project Scope:

Measure temperature (thermistor voltage) and
report degrees Celsius once per second over
serial port



> gem 1nstall ceedling
> ceedling new MyProject
Project 'MyProject' created!
- Tool documentation 1is located 1n vendor/ceedling/docs

- Execute 'rake -T' to view available test & build tasks
> cd MyProject
> rake test:delta

iy B

(S
-~ No tests executed.

>




Feature Request / Task

Read Analog to Digital Converter
X times per second



Lets GO!

Dig through datasheet

ADC_Init()

@ Setup ADC in proper mode

ADC_Read()

@ Trigger a conversion and wait for completion
@ Return the results

Wire it into the system

@ We still need to time the samples

WAIT!!

Where do the results go? Hmmmm......



Feature-Driven Development

@ “"We need to read something from and
ADC converter, so let’s write a driver!!”

@ NOOOOOOOOOO0O0000O00000

® Leads to cluttered APIs and DEAD CODE!

@ Focus on what is required NOW, and
implement ONLY THAT

@ Use a fop-down approach, discovering needs
along the way



Feature-Driven Development

(continued...)

@ Software IS features
@ Customers pay for features, NOT infrastructure

@ Infrastructure-First => WASTE

@ Feature-Driven Development
@ Minimally working system as soon as possible
@ Build fowards feature completion
@ Tests are a safety net while refactoring

@ Features yield meaningful progress metrics

@ Satisfied project managers AND developers



Top-Down Design

® Mocks to the rescue!

@ CMock generates mocks using only header
files (INTERFACES)

@ The lower levels need not be implemented AT
ALL!

@ Leads to easily refactored interfaces prior to
implementation of underlying code



CMock

@ Creates mocks of modules using only the
header files (interfaces)

@ Utilizes Ruby to make the magic happen
@ Creates helper methods

® Verifies interactions with other modules and
libraries



ARGS* ParseStuff(char* Cmd);

void

HandleNeatFeatures(NEAT_FEATURE T NeatFeature);

ParseStuff(char* Cmd);

ParseStuff ExpectAndReturn(char* Cmd, int toReturn);

ParseStuff _IgnoreAndReturn(int toReturn);

ParseStuff StubAndCallback(CMOCK ParseStuff CALLBACK Callback);

HandleNeatFeatures (NEAT _FEATURE T* NeatFeature);
HandleNeatFeatures Expect(NEAT_FEATURE T* NeatFeature);
HandleNeatFeatures ExpectWithArrays(NEAT_FEATURE T* NeatFeature,
int NeatFeature Depth);
HandleNeatFeatures Ignore(void);
HandleNeatFeatures StubAndCallback(CMOCK HandleNeatFeatures CALLBACK
Callback);



void test MyFunc _should ParseStuffAndCallTheHandlerForNeatFeatures(void)

{
NEAT _FEATURES T ExpectedFeatures = { 1, "NeatStuff" };

ParseStuff_ ExpectAndReturn("NeatStuff", 1);
HandleNeatFeatures Expect(ExpectedFeatures);

//Run Actual Function Under Test
MyFunc("NeatStuff");

void MyFunc(char* Command)
{

int ID;

NEAT _FEATURES_ T Neat;

ID = ParseStuff(Command);
switch(ID)
{
case O:
HandleStupidFeatures();
break;
case 1:
Neat.id = 1;
Neat.cmd = Command;
HandleNeatFeatures(Neat);
break;
default:
break;




Anatomy of a Ceedling Test

SOURCE(S) TEST

MOCK(S) RUNNER FRAMEWORK

void rint foo(int)
void foo (void) test bar (void)

o PR |
{...} {
ASSERT (

void main (void) int
{
int bar (char)

{...}

1 void
5, , foo Expect (void)
bar(‘a’)); RIS
} :

ASSERT (int, int)
setUp () ; {...1
test foo();

tearDown () ;

TEST FIXTURE

EXECUTABLE




Ceedling Quick Ref

o rake -T
@ List all tasks
o rake test:my_module
@ Test the specified module
@ Also can specify test, header or source
@ rake ftest:all
@ Test all modules
@ rake test:delta

@ Test changes (incremental)



Questions?



