
Premise:

 agile practices, genuinely and correctly
applied, will improve your development process

Sources:

 Atomic Object - 20 developers, 5 years old,
XP practices from 2000

 Consulting - larger companies, variety of
domains

 Conferences - XPU, XPAU, Agile International
in particular

 Smart People - Ron Jeffries, Bob Martin, Brian
Marick, Bret Pettichord, Michael Bolton, Scott
Ambler, to name a few

Asking them for examples, help them sketch things,
describe scenarios

 whiteboards, paper, document
Question: Do you keep these artifacts?

90% do

Helps to have 2 keyboard, 2 mice

design reviews that aren’t done seriously

Easier to inflate a unit test to a system test than keep it
focussed.

The integration tests (larger, more complicated, more
objects) are the ones particularly prone to be fat.

Interaction-style testing limits the boundaries of these test.

Thought experiment:

A colleague asks you to build some code that performs in
a certain way.

 What do you do when you develop the new
method or function?

 Do you just code it up and hand it to them?

 Do you compile it first?

 Do you run it a few times?

 How do you know it works?

 You test a few interesting cases.

 You might have to write a little jig to hold
your test.

 What happens to the testing code, typically?

Testing can’t be eliminated in a pinch
So technical debt can’t build

 so velocity doesn’t slow

 so you can meet your deadlines

 so your company can stay
competitive

 so you can keep your job

A little testing education goes a long way
Don’t get bogged down in the analytic school

auto plants: $100,000 / hour downtime penalty

dumping it:

 you’ve got a working system to test against

 the value isn’t as much the code per-se, as the
knowledge it encompasses

 you’ve got pretty good requirements

 you may be able to take advantage of new
technologies, practices, tools

Doesn’t do anybody any good

Fears about evaluations, raises, job security are often
overblown

If they aren’t, do you really want to work there?

Courage is one of the four XP principles

the biggie: Cruise Control
roll-your-own: DCI in Ruby, DCI Monitor

spectrum of testing from unit -> integration -> system
automated unit + integration tests generally in same suite
interaction testing makes for focussed, tight integration
tests, just like unit tests

Customers are usually less versed in your craft than you
are.
You don’t tell them what features to put in their app...
Helps to reduce cost of testing
Story: AO and unit->system testing

Pretty amazing to reduce bugs by 10x
Unless you are a very big team you won’t keep one busy
all the time
Story: AO and first large project
Exploratory testing is more than finding bugs: usability,
configuration, compatibility with previous versions,
installation
Story: AO and customer trust - important demos with no
prior manual testing

AO examples: kiosk, order entry app, web apps and
libraries

Create tests that define the assumptions you made about
the environment while building the software

Story: AO as contractor, customer desire to spread
practices, work at customer location

Finding bugs with system tests is horribly inefficient
Story-driven development keeps developers focussed on
customer priorities
Periodically coming back up for guidance after a deep
dive into code

Agile teams often pair, they usually take team
responsibility for tasks
Story: maintenance team, change-controls-per-month by
person
3rd rail: Distinct, individual compensation

Developers know their craft - should you really second
guess them?
Learning new tools, technologies, languages isn’t so hard
Innovation requires some room to experiment

 AO on system testing:

 Java GUI automation -> manual ->
organizational pattern -> ?

 AO on web development

 classic perl CGI

 OO perl

 PHP

 PHP with template library

 XML framework

 Rails

many roles: architect, dba, tester, analyst, programmer,
proj manager

The business analyst tries to express requirements in
English. They are

 ambiguous, incomplete, expensive to produce,
often wrong
The architect tries to express an architecture with
diagrams. They are

 usually created at the wrong time, a long way from
design or code
The DBA designs tables without knowing how the
application will use them

Specialization bloats team size

Quite distinct from plan-driven project management

Small projects: tabular report by phase
Larger projects: burndown chart by iterations

the ultimate job of leadership

Managers were good at doing what the legacy system
valued.
Changing that system causes legitimate fears.
Capital One: Agile Int. Conf, 2006

Open facilities
Pair programming
Continuous integration and build
Estimates and velocity

Cost to team and individual morale
Distraction to manager from already difficult agile adoption
challenges

Customer is part of the team

Project plans: often created at the point of maximum
ignorance

planning is too important to be done once

the world changes too much during the project

Scrum has definitely won the marketing game (vs XP’s
planning game)

Development team: the car
Customer: the driver
velocity is the speedometer on the car

extreme: full story decomposition and estimation
extreme: crude subsystem estimates (+- 50%)

top red line is the total amount of work to be done
scope creep pushes the red line up
removing features pulls the red line down
notice: this red line didn’t move

top red line is the total amount of work to be done
scope creep pushes the red line up
removing features pulls the red line down
notice: this red line didn’t move

We use an exponential moving average with alpha = 7/8

Vnew = alpha * Vlatest + (1-alpha) * Vold

Stories about bad metrics

1. Maintenance team was historically measured by
percentage of requests handled in a given time period.

Not requests/developer, not even total number of
requests.

The team was not consulted on the denominator (requests
desired to be completed)

The variance of the complexity of requests was large

Reason for resisting change to this metric? the customer
was used to it

red line is the total amount of work to be done
green line is sum of work done
blue line is remaining
scope creep pushes the red line up
removing features pulls the red line down

Design for testability is better design
Being pushed to answer the ever-present question will in
turn push you towards understanding design principles

The single most powerful, concrete action you can take to
become a better designer is to try and answer this
question.

Bob Martin’s book “Agile Software Development:
principles, practices, patterns”

dependency injection framework can help with
composition of objects

ironically this is an advantage of using an outside
contractor

This is a hard problem. I think agile iterations and regular
delivery actually helps

controlling development isn’t simple
refactoring legacy code - costly in short-term, saves in
long-run
building a testing framework - costly in short-term, saves
in long-run

maybe the customer doesn’t directly bear the long-run
cost

adding people (cost) is hard to do efficiently, has team-
size limits

quality is the only hope for better throughput, lower cost

 Ken Schwaber’s arguments about the life of a
company, cost of legacy

iterations, feedback, letting the customer steer

risk for developers: adapting to change, taking feedback,
letting customer steer
risk for customer: being locked into what they don’t want
risk for both: wasting time arguing contracts,
requirements, intent

Agile conferences the last few years: scaling agile up

My interest is the opposite: scaling agile down

Story: One hour discussion in a standards group decides
that interaction testing isn't valuable. Nothing concrete,
vague context, no experiments, no experience.

agile doesn’t fix everything

 it’s a flashlight in a dark room

 not willing to fix what it reveals?

Story: Working on-site at our customer in typical open
office plan (cubes).

 Worst of both worlds: enough barrier to inhibit
much technical collaboration.

 Enough barrier to make people have some sense
of privacy and to talk inappropriately.

Story: cardinal sin (liability of some sort) to mess with
cubes
carving decent space out of the cubes

test automation, iterations, stories, pairing, ...

risk of incremental change

 nothing much changes

 new problems aren’t addressed

 skeptics see it as a passing fad

AO story: easier to start from scratch than change culture

IBM PC story

Dyno host project: 6 dev, 9 months, onsite at AO, pairing
AO-Bepco, 1 week iterations, transition back in last
month, agile nucleus

Basement team room story: risk of invisibility, scattering
team to thin later, need to be more conscious of spreading
the word

McLuhan: Canadian communication theorist, educator

Story: Visual Source Safe is setup so that each developer
has their own repository. They don't commit even daily (no
need), integration is infrequent, code lacks genuine
source control.

Story: One big room, dev pairs, testing. SCC with locking
means interruptions, manual hand offs, checking in non-
compiling code.

Story: Language and unit test suite requires adding a new
test to three places in two files. Developers make fat tests
as a result. Code-generation helps solve.

Tools don’t make you agile

 especially true for big, all-in-one, complicated,
religious-conversion tools

I have heard the statistic widely quoted that 40% of
purchased testing tools sit on the shelf, unused

Testing in agile is a whole lot more than finding bugs

It’s more of a development activity

like the simple design practice, don’t assume you’re
gonna need it

 index cards, whiteboards, paper, daily meeting

AO story tracking: index cards -> time tracking tool ->
BaseCamp -> ExplainPMT

from low-tech, easy to more complicated

 cards and colored labels

 time tracking tool

 BaseCamp collaboration service

 ExplainPMT web app

payoff from first day - why not start immediately?

customer more understanding about ramp up than slow
down

build code is better than a README (the one-line
README)

probably not worse than before, but also not much better

space doesn’t have to be a lounge - just a different part of
the room

Story: company learns snacks are “XP”. buys individually
wrapped snacks. developers take snack, eat alone at
desk. Snacks first to be cut in budget woes.

the concepts are distinct, both important

confusing the terms confuses the concepts

the days of relatively low-level languages and tools

Pete McBreen’s book on Software Craftsmanship is a
good starting point

Winston Royce
“Managing the Development of Large Software Systems”
IEEE WESCON, August 1970

agile as “just hacking”, undisciplined, ad-hoc

the problem: similar on the surface

the point: software is all “hard stuff” , manufacturing is
trivial

design takes place while you’re programming, whether
you acknowledge it or not

See Bob Martin’s Agile Software Development book for a
copy

developers are people
the difference in most talented and average is dramatic

ultimately it all comes down to good people

Particularly egregious with a high-functioning agile team

Question: did the large teams finish faster?

Explanations?

 Communication and coordination inefficiency

 Greater rate of defects (5x)

Source:
“Haste makes waste when you over-staff to achieve
schedule compressions”
Doug Putnam, QSM, Inc.

Often use names like “agilistas”, refuse to adopt new
terminology

almost no matter who you are: consultant, junior
developers, team lead, manager

you’ll find problems with disturbing the pecking order

agile development practices are disruptive

pairing, one big room, build and test automation - people
know what you’re doing, what you know, what you’re weak
in

be prepared to handle personnel problems - agile won’t do
that

Such a company may do pretty well, probably doesn’t
have major disasters

Not Invented Here - common reaction

Story: I’ve heard of companies that construct committees
to “evaluate” new ideas, convince themselves that they
couldn’t benefit from change, spend a lot of time
protecting the corporate ego

Risk: losing out on doing even better, doing it more
efficiently, having more fun

leadership: challenging them to do better, travel budgets,
responsibility on teams

The bad news is that the engineering practices are the
easier part

The people, politics, management, communications,
customers are the hard part

Agile exposes developers to customers. This means you
need developers that have broader skills including the
“softer” stuff

this is why we like the craftsmanship model

Source: “Planning Extreme Programming” by Kent Beck,
Martin Fowler

