of Agile Adoption

Carl Ericksan, =D

Premise of this talk

Agile practices, effectively and
properly applied, will improve your
development process. Knowing the
likely pitfalls you'll run into will help.

start here

Sources

Ararnic Objece - 5 years, hundreds of projscts

The Avoms of A0 - B, Dave, Micah, Drew, Dustin, Greg, Justn, Kardin, Mark,
Mate, Mike, Mike, Pavrich, Patrick, 5ot Shawn

Consulting - larger companies, variety of domains

Conferences - XPUL XPALL Apile Internaticnal, AWTA in particular

Smart People - Ron Jeffries, Bob Mardn, Briam Marick, Bret Pectichord, Michael
Bolvan, Scotr Ambler, to name a few

Inspiration
Matr Heusser sald the (dea of this 'k o 5D Best Pracrices 2006
The materizl and the slides are my own

Background

Assume you know something abour agile practices

e

Premise:
agile practices, genuinely and correctly
applied, will improve your development process

Sources:

Atomic Object - 20 developers, 5 years old,
XP practices from 2000

Consulting - larger companies, variety of
domains

Conferences - XPU, XPAU, Agile International
in particular

Smart People - Ron Jeffries, Bob Martin, Brian
Marick, Bret Pettichord, Michael Bolton, Scott
Ambler, to name a few

Navigation

The perils and picfalls described in this alk are crganized inte 14 vop level
sections. Each section has a list of hyperlinks e the related picfalis.

Ezch page has z link in the wep left corner that returns you to the previcus
organizational level, Some pages have 2 sequential link in the lower right
COFTVET.

Rules af the garme [if you wera in Boston)
You will determine what we ralk abowr, what slides we visic
You accepted a ball from me at the scarc
This ball represents an cbligation 1o choose a picfall,
Throw your ball at the front to make a cholce,
Please rake the ball home.

next
EEE
& a0, L9
- e S
[EE ST pairirg basting pred redp
&
@ @]
project mrgmt design hm-inus madel culture
R . fi ﬂ\
peals magic totems misconceptiond people

gy 200 Al e il LC

Customers

Working without an engaged customer
Customers won't define acceptance tests
Customers don't trust you

Customers drive carelessly

gy 200 A e il LC

A
WWorking without an engaged

customer

Being a good customer: hard, time-consuming

You'll be missing: requirements, acceptance criteria,
pricrities, domain expertise

Developers: consummate problem solvers

Key question to askls it worth building?™

(s
Customers won't define acceptance

tests

What will you build?
How will you know when you're done!

Suggestion: don't use the word “test”

Customers don'’t trust you

Side effects include:
= asking for the moon
* unwillingness to pricritize
= difficulty in phasing
* no minimal working system

Suggestion: start small, deliver early, deliver often

Asking them for examples, help them sketch things,
describe scenarios

whiteboards, paper, document
Question: Do you keep these artifacts?

Customers drive carelessly

Customers are the driver, developers are the car

With a powerful car comes a heavy responsibility

Bad stuff: churning, thrashing, changing directions abruptly
Mot keeping your eyes on the road ahead

* customer feedback
* market research

Coageighl 200 Asan Ot 1LLE

4]
Pairing

Budgeting 2x when your development team pairs
Assuming most developers will dislike pairing
Letting the stronger person drive

Eliminating pairing, not mitigating risk in other ways
Chnly pairing when introducing new team members
Estimating in pairs hours

Menitors in a corner

Mot pairing pragmartically

gy 200 A e il LC

Budgeting 2x when your
development team pairs

Cddly commeon mistake
Usually results in “no pairing” decree

Suggestion: refer to these studies

Pair Programming
Studies

o Cockburn & Williams

® 5% gverhead for pairing (controlled, academich

® |mproved design, defect rate, morale

® |ensen
®* “two person pragramming teams”
® 975 study of Fortran project. 50k LOC
® Productivity 2.1x greater in pairs [LOC!persan-month}

® [0k reduction m defect mie

(s
Assuming most developers will

dislike pairing

Poll: if you have not tried pairing, do you think you'd like
it!

Letting the stronger person drive

Two roles: driver, navigator
A strong person driving must be careful

Suggestion: weaker partner drives, or switch frequently

90% do

Helps to have 2 keyboard, 2 mice

4] design reviews that aren’t done seriously
Eliminating pairing, not mitigating

risk in other ways

Single points of knowledge

Complexity, opagueness, and over-design
Opportunities to be mentored, learn
Wasting time being stuck

Mot following standards, best practices

Increased develeper fear (“my pair has my back™)

Cageighd 05 Asaen Ot 1LLE

n
Only pairing when introducing new

team members

Training and ramping-up is ebviously beneficial

Reverting to the “2x pitfall”

Estimating in pairs hours

Developer: “that will take |0 pair hours"
Customer: “so about $1000"
Developer: “ne, about $2000"
Customer: “| can't afford pairing!"

Suggestion: estimate work for pairs, multiply by 2, report
plain old hours to the customer

gy 208 A Ol LLE

n
Monitors in a corner

gy 208 A Ol LLE

Not pairing pragmatically

Solo work is ok when
* There's an odd number of developers
*You have an experienced person
*You have “cloning” work to do
*You have exploration/learning to do

Mo compromise on
= All new code
= All design guestions
= All testing challenges

Coageighl 200 Asan Ot 1LLE

4]
Testing

Writing fat unit tests

But you can't test X!

Thinking about TDD as testing

Defining all your tests up front

Doing TDD without knowing how to test
Using “implement me” for more than a day

Fair weather tester

Legacy code

gy 200 A e il LC

[4] Easier to inflate a unit test to a system test than keep it

bl : focussed.
VWriting fat unit tests

The integration tests (larger, more complicated, more
objects) are the ones particularly prone to be fat.

Very commeon TDD beginner mistake
Interaction-style testing limits the boundaries of these test.

State-based testing contributes to bloat for integration
Tess

Impacts: suite run time, refactoring cost

Suggestion: learn to use interaction testing

4]

Interaction Testing

Integration tests often invalve multiple objects
Doing state-based assertions makes for fat tests
Maocking neighboring objects keeps integration tests lean

Plus: interaction testing is a means of discovering needed
responsibilities (a design activity)

“Mock Roles, not Objects”, Freeman, Pryce, Mackinnon,
Walnes, OOPSLA 2004

Capneighd S0

But you can'’t test X!

Where X = {embedded, stored proc, function, system call,
report, GUI, legacy code}

Unlikely, but if not, you've got a bad design

Suggestion: look at testing as just another problem to
solve, consider changing the design

Coageighl 200 Asan Ot 1LLE

Thinking about TDD as testing

Misses out on the many non-bug finding advantages

Suggestion: den't do it

Why TDD?

Just-in-time specification

Caralyst for communication (pairs)
Documentation of behavier

The first client of a module
Supports collective code ownership
Continuous code improvement
Better design (locser coupling)
Pace of development is smoother
Avoiding technical debt

3
Thought experiment:
Who, when, why! A colleague asks you to build some code that performs in
a certain way.
PN —— What do. you do when you develop the new
is done by developers, method or function?
while the-}r write source code, DO yOU jUSt COde |t up and hand |t to them?
to know when they are done, Do you compile it first?
to document what they have done, Do you run it a few times?
to extend and maintain code fearlessly. How do you know it works?
You test a few interesting cases.
You might have to write a little jig to hold
your test.
> What happens to the testing code, typically?

TDD and Deadlines

Defining all your tests up front

The BUFD approach o TDD
You'll write code you den't need
|t may be days or weeks before you see green bar

Suggestion: don't do it

Testing can’t be eliminated in a pinch
So technical debt can’t build
so velocity doesn’t slow
SO you can meet your deadlines
SO your company can stay
competitive

SO you can keep your job

[4] A little testing education goes a long way
Doing TDD without knowing how Don’t get bogged down in the analytic school

to test

Good tests are A-TRIP
se these mnemonics
Comes with time and experience

Suggestion: find an experienced test-infected developer

Characteristics of good tests

A - automated
1 - thorough

R - repeatable

I - independent
P - professional

Right BICEP

Right =wfT is computed? Results as expected? How would you
know? (test that)

Boundary conditions handled correctly? (think about equivalence
classes)

Inverse relationship works? (e.g. check that sguare of sguare oot
is original number)

Cross-check results some other way? (perform the operation some
other way and check)

Error conditions correct? (force errors, confirm exceplions,
expected error retum, elc)

Performance characieristics ok? {lo spec, or?)

Coageighl 200 Asan Ot 1LLE n

CORRECT

Conformance - to proper format?

Ordering - ordered or unordered as hoped?
Range - within range?

Reference - what does the code depend on?
Existence - non-null, etc

Cardinality - number of values right?
Time - in order? right time? on time?

Coageighl 200 Asan Ot 1LLE

(s
Using “implement me" for more

than a day

The test you recognize needs to be written
fail(*implement me*):

Pecple stop expecting the green bar

n auto plants: $100,000 / hour downtime penalty

Fair weather tester

“It's due Tuesday!"”

“Don't shut the plant down!™

“We don't have anyone to pair you with"
“You've only got 40 hours!™

Suggestion: test infected developers

Coageighl 200 Asan Ot 1LLE

4] dumping it:
you’ve got a working system to test against
the value isn’t as much the code per-se, as the
knowledge it encompasses
Agile practices won't magically undo years of technical you’ve got pretty good requirements
debt you may be able to take advantage of new
technologies, practices, tools

Legacy code

Suggestion: seriously consider dumping it

Suggestion: integration/system tests help you define
expectations

Suggestion: don't let the old pollute the new

Suggestion: slowly carve it out and replace it

e

4]
Professional Responsibility

Hiding the truth
MNo brave people
Mot taking personal responsibilicy

Hiding the truth

Commen when asked
* for an estimate
* to accept a date
* whether something is dene

Suggestion: practice speaking truth to power

No brave people

Related o the pitfall of hiding the truth

Effective agile developers
= care deeply about quality and preduction
* are passionate about their profession

Are therefore willing to
= point out that an artifact is useless
= arm themselves with wrenches and screwdrivers
* learn new toals, technelogies, techniques
= engage in a job-risking fashion

S LA

Capneighd S5

Doesn’t do anybody any good

Fears about evaluations, raises, job security are often
overblown

If they aren’t, do you really want to work there?

Courage is one of the four XP principles

(4]

Not taking personal responsibility

Preducing code you can't prove works
Accepting unrealistic estimates or deadlines
For quality, broadly defined

For all aspects of sofoware development

Advanced

Thinking you're immune to project bit rot
Stopping at state-based testing

Estimating testing and development separately
Thinking that automated unit testing is enough
Mot testing the environment

Agile developers need company

Misunderstanding system tests

gy 200 A e il LC

s
Thinking you're immune to project

bit rot

You've been doing the basics for a while
= automated testing
= customer prioritized, development
* jterations

What happens to projects in maintenance!?

Suggestion: continueous, autematic build + visibilicy

Continuous Integration

Cl = automatic build + test

DLl Monitor

the biggie: Cruise Control
roll-your-own: DCI in Ruby, DCI Monitor

4] spectrum of testing from unit -> integration -> system
: : automated unit + integration tests generally in same suite
Stopping at state-based testing interaction testing makes for focussed, tight integration

tests, just like unit tests

State-based: invoke unit, assert on state
= simple, core practice
= harder for integration tests
* inCreases test maintenance

Interaction-based: mock neighbors, assert on interaction
= correct method called

= ordering of methods
= good tools available

Suggestion: learn how to use both techniques

Cigiy=ighd 2058,

4] Customers are usually less versed in your craft than you
Estimating testing and development are.
SEpar‘atEhf You don'’t tell them what features to put in their app...

Helps to reduce cost of testing
Story: AO and unit->system testing
Would you hand a kid a lcaded gun with the safety off?
Remember, the T in TDD isn't really “resting”

If you're willing to let customers eliminate testing...

4] Pretty amazing to reduce bugs by 10x
Thinking that automated unit testing Unless you are a very big team you won’t keep one busy

: all the time
1S ennugb Story: AO and first large project

Exploratory testing is more than finding bugs: usability,
configuration, compatibility with previous versions,
installation

Story: AO and customer trust - important demos with no
prior manual testing

Reducing bugs that hit production by 10x
The missing piece: exploratory testing

Suggestion: makes friends with a good exploratory tester

n AO examples: kiosk, order entry app, web apps and

: : libraries
MNot testing the environment

Create tests that define the assumptions you made about
the environment while building the software

Software is designed to run in a particular situation
* gperating system
* authentication/authorization
* environment

Fault isolation can be costly

Suggestion: automated tests encode assumptions

Agile developers need company

Don't expect a single agile seed to grow in a wraditional
garden

Suggestion: pairs are powerful

Misunderstanding system tests

TDD doesn’t leave many bugs to find (|0x reduction)
Impertant role: integration, build, and regression
Leaving them for last, not automating is a bad idea

Suggestion: drive development with system tests

Story: AO as contractor, customer desire to spread
practices, work at customer location

Finding bugs with system tests is horribly inefficient
Story-driven development keeps developers focussed on
customer priorities

Periodically coming back up for guidance after a deep
dive into code

D
Leadership / Management

Individual metrics, rewards, evaluations
Mot trusting your team

Specialization

Confusing roles and responsibilities
Maving on without celebrating

Failure to inspire

Middle management resistance

Making bogeymen of external forces

lgnering bad apples
Lack of executive support

n Agile teams often pair, they usually take team
Individual metrics, rewards, responsibility for tasks
evaluations Story: maintenance team, change-controls-per-month by
person
Agile is a team sport 3rd rail: Distinct, individual compensation
* co-located, tightly-coupled
* sharing, helping

* team responsibility

Teasing out individual contributions is hard, and potentially
counter-productive

The corporate “third rail”

Suggestion: de some research

Cigiy=ighd 20568,

Agile Metrics, Compensation

“5ix Dangerous Myths about Pay", |effrey Pfeffer,
Harvard Business Review, May/June 1998

“Appropriate Agile Metrics: Knowing What and
When to Measure", Hartmann, Dymond,
Agile International Conference, 2006

Not trusting your team

Agile developers take pride in and know their craft
Craftspeople learn new tools quickly
Craftsmanship drives process innovation

Agile practices deliver

= working software regularly
= data you can manage with

Developers know their craft - should you really second
guess them?
Learning new tools, technologies, languages isn’t so hard
Innovation requires some room to experiment
AO on system testing:
Java GUI automation -> manual ->
organizational pattern -> ?
AO on web development
classic perl CGl
OO perl
PHP
PHP with template library
XML framework
Rails

Specialization

Role specialization causes
* interfaces between specialists

= translating between specialists (non-source artifacts)
* responsibility shifting

You don't want PhDs, you want craftspeople

Suggestion: listen to Lazarus Long

Lazarus Long on Specialization

A human being should be able to change a diaper, plan an
invasion, butcher a hog, conn a ship, design a building,
write a sonnet, balance accounts, build a wall, set a bone,
comfort the dying, take orders, give orders, cooperate,
act alone, solve equations, analyze a new problem, pitch
manure, program a computer, cook a tasty meal, fight
efficiently, die gallantly. Specialization is for insects.

Robert Heinlein,
Time Enough for Love

many roles: architect, dba, tester, analyst, programmer,
proj manager

The business analyst tries to express requirements in
English. They are

ambiguous, incomplete, expensive to produce,
often wrong
The architect tries to express an architecture with
diagrams. They are

usually created at the wrong time, a long way from
design or code
The DBA designs tables without knowing how the
application will use them

(4]

Confusing roles and responsibilities

Team is the car

instruments, fuel efficiency, turning radius, compass
Customer is the driver
where are we going! what route shall we mke! when will

we get there!

Developers take responsibilicy for dates too readily

Suggestion: produce data for customer/manager to steer by

. - " 5 = 4 Frojezf Bumdews

Quite distinct from plan-driven project management

Small projects: tabular report by phase
Larger projects: burndown chart by iterations

Moving on without celebrating

Agile makes meeting budgets and deadlines normal.
Applications usually just work as intended.
There's always ancther project to move on to.

Suggestion: make a ritual

Failure to inspire

Too often focus on culture change pain
Worrying about impact on legacy roles
Technical difficulties, baggage of legacy code

Suggestion: talk about a future of integrity, quality, pride of
craft, innovation, efficiency, business success

Coageighl 200 Asan Ot 1LLE

the ultimate job of leadership

Middle management resistance

Legitimate fear: what is my role, if it's not:
* task assignment
* reporting data from team
= customer liaison

Capital One: lean + agile
22 manager peers reduce to 4
no preject cancellations
30-50% faster, no reduction in quality
10-15% cost reduction

Capneighd S0

4]

Making bogeymen of external forces

“But the auditors said...”
SAST0, HIPRA, CMM, EVM, DO-| 7BB

Suggestion: seek intent, be creative, don't assume

Managers were good at doing what the legacy system
valued.

Changing that system causes legitimate fears.

Capital One: Agile Int. Conf, 2006

4] Open facilities

Pair programming

Continuous integration and build
Estimates and velocity

lgnoring bad apples

* one big room Distraction to manager from already difficult agile adoption
* pair programming challenges

* automatic build
* estimating, measuring velocicy

Agile doesn't solve personnel problems, but it may expose
them

4] Customer is part of the team

Lack of executive support

Running under the radar
+ usually works for engineering practices

Engineering practices are self-sustaining

Most likely to hit limits of this approach with
» facilities
* CUSTOMErs
* legacy processes
* planning

Capneighd S0

Project Management

Confusing plan the noun with plan the verb
Thinking Scrum is sufficient

Velocity without distance
Counting on a team increasing velocity

The wrong metrics

Confusing plan the noun with plan
the verb

Project managers may think about plans, not planning
Agile methedolegies plan centinuously
Steering, adapting, mitigating risk, tracking, projecting

V5
Tracking conformance to “the plan”

Project plans: often created at the point of maximum
ignorance

planning is too important to be done once

the world changes too much during the project

Thinking Scrum is sufficient

Scrum speaks to roles, iterations, and customer priorities
Scrum has nothing to say on engineering practices

Suggestion: use Scrum as the interface to the customer,

but follow the rest of XP

Coageighl 200 Asan Ot 1LLE

XP Practices
__Wiholy
e Tadimi o
" B
e Codlinrgg
LR Himeadaid
L nfap Tiil-Chiann
/ f,.-" (RS] -\"“.\l.
Cuaiar Faw sl v
- Falnciming
:.\H ety THATHIN Garme
1 .
ST n— B
Iniaratice: Dyt Biictarabbe
Fiacs
Bl irtagoin
-\""--_____ Small
[EE T T
Cognrigh D8 S O iLLE

Scrum has definitely won the marketing game (vs XP’s
planning game)

Velocity without distance

Agile teams measure their development velocity

Burndown or Burnup charts turn this velocity into a
prediction of completion time

Where does the top red line (distance to go) come from?

Suggestion: estimate in frequency and detail as business
need justifies

The top red line

Fraje=f Turndewss

Development team: the car
Customer: the driver
velocity is the speedometer on the car

extreme: full story decomposition and estimation
extreme: crude subsystem estimates (+- 50%)

top red line is the total amount of work to be done
scope creep pushes the red line up

removing features pulls the red line down

notice: this red line didn’t move

top red line is the total amount of work to be done
scope creep pushes the red line up

removing features pulls the red line down

notice: this red line didn’t move

Change in scope

Frajed Burnd s

4]

We use an exponential moving average with alpha = 7/8
Cnuntmg on a team Increasing

‘-"E|ﬂcity Vnew = alpha * Vlatest + (1-alpha) * Vold

Teams take some time to establish rhythm, ritual, master
technologies, gel

So it would seem reasonable to expect velocity later in
the project to increase

But the refactoring burden also increases

Suggestion: either, assume it won't change much from
initial, or use exponential moving average

e gl 20,

(4]

The wrong metrics

lUsing metrics designed for traditional processes
* individual developer vs team
* discrete vs continuous (scope delivery)
= defect rate

Agile projects naturally generate valuable metrics
* test bulk, status
* SLOry count, status
* development velocity

Frajezd Bumdevws

Stories about bad metrics

1. Maintenance team was historically measured by
percentage of requests handled in a given time period.

Not requests/developer, not even total number of
requests.

The team was not consulted on the denominator (requests
desired to be completed)

The variance of the complexity of requests was large

Reason for resisting change to this metric? the customer

red line is the total amount of work to be done
green line is sum of work done

blue line is remaining

scope creep pushes the red line up

removing features pulls the red line down

Vare Lires Li3E | Classas | Hethids | HIC | LOCAH
: - . - - - % + '
Ealpacs 1a% r ¥ 1) 1%
raskrallers [T BaE I LH -1 5
e 5 [[5]]
Turpresha] £ r] 3 a

B3 teets, 097 asmertiors, 3 Lalleres, 0 wroors

gy 208 A Ol LT

Design

Mot having good enough design skills
Have a pattern, find a need
The singleton pattern

gy 00 Al e Ol AL

s
Not having good enough design

skills

Makes refactoring more freguent, more expensive
Makes testing meore difficult, expensive
Tempts you back to specialists and up-front werk

Suggestion: use the power of the ever-present guestion

How am | going to test this?

; . Sockel
| Curtableniel | | Dsiafains |

@b g Jzdrany

Design for testability is better design
Being pushed to answer the ever-present question will in
turn push you towards understanding design principles

The single most powerful, concrete action you can take to
become a better designer is to try and answer this
question.

Better design

Have a pattern, find a need

Aka: have a hammer, find a screw
This isn't a pitfall unique to agile development
You can push back with YANGNI or Simple Design

Suggestion: start with principles first

Bob Martin’s book “Agile Software Development:
principles, practices, patterns”

The singleton pattern

Unfertunately easy to understand, apply. find apparent
need for

Makes testing difficult
* coupling between tests methods

= difficulty in mocking

Suggestion: modify the pattern, or use a different design

Business Model

Development time is free

Asking customers to prioritize cost, quality, scope
Fixed price agile development

Really small projects

Ciageighl 00 Ap Ot 1LLE

dependency injection framework can help with
composition of objects

Development time is free

Applies to internal development teams

If customers don't pay for dev time, they may...
* not fully engage on the team (they are busy)
* not think about value or ROI
* never stop asking for more
+ not fully understand their business

Suggestion: internal chargeback? hire contractors? get
better at IT governance! manage the portfolio better?

e gl 20,

n
Asking customers to prioritize

cost, quality, scope

Most customers don't understand the levers well encugh

Suggestion: scope should be the enly control offered

ironically this is an advantage of using an outside
contractor

This is a hard problem. | think agile iterations and regular
delivery actually helps

controlling development isn’t simple

refactoring legacy code - costly in short-term, saves in
long-run

building a testing framework - costly in short-term, saves
in long-run

maybe the customer doesn’t directly bear the long-run
cost

adding people (cost) is hard to do efficiently, has team-
size limits

quality is the only hope for better throughput, lower cost
Ken Schwaber’s arguments about the life of a

Fixed price agile development

Customer insists on a fixed price project

The development team is committed to doing the right
thing

Suggestion: Keep it small, earn their trust, migrate toward
opticnal scope contract

Really small projects

Agile sweet spot: 2-4 pairs, 6-12 months
* interesting problems to solve
* commitment by customer (time and money)
* opportunity for rhythm and ritual
= big enough to fail spectacularly

Really small projects are more challenging
* financing and budget
* customer time and commitment
= start and stop pattern
* consistency of developers

Cigiy=ighd 2058,

iterations, feedback, letting the customer steer

risk for developers: adapting to change, taking feedback,
letting customer steer

risk for customer: being locked into what they don’t want
risk for both: wasting time arguing contracts,
requirements, intent

Agile conferences the last few years: scaling agile up

My interest is the opposite: scaling agile down

n
Culture

Talk, talk, talk

Giving up too soon

Agile is going to fix everything

It's just words

Letting need for adaptation become a license to ignore
Underestimating the facilities problem

Change everything

Being stifled by existing culture

Talk, talk, talk

Talking about practices isn't the same as deing them

Favor concrete experiment and experience over talking

Suggestion: just do it

h—"‘"

Story: One hour discussion in a standards group decides
that interaction testing isn't valuable. Nothing concrete,
vague context, no experiments, no experience.

Giving up too soon

Tools, approaches, thought processes - take time
A short trial (| hour, | day, | week) isn't enough
Experience and a good coach can help

suggestion: Focus on the right questions
Mot how do | do TDD?
But: how do | prove this method works?
Mot how do | de my 9 month project in iterations!
But: what single feature can | deliver or demo by Friday?

Coagneighl 00 Asan Ot 1LLE

n
Agile is going to fix everything

Pecple problems, organizational problems, technology
problems, marketing problems

Suggestion: inspire somebody to worry about the
“process above the process™

agile doesn'’t fix everything
it’s a flashlight in a dark room
not willing to fix what it reveals?

It’s just words

Mew agile practices and concepts can be mapped onto
existing legacy terms

Continuing with old familiar terms can blunt the point of
and significance of change

Words are all that we work with, words are powerful

Suggestion: be explicit about new terms, buy-in to use
them

Coageighl 200 Asan Ot 1LLE

4]

Letting need for adaptation become
a license to ignore

"WWe thought about that [or tried, trivially] and it's not
right fer our organization.”

“We've adapted this practice te our particular situation
(just like the agile guy says)."

Suggestion: Agile is what you do after you've mastered all
the practices (Ron |effries)

Coageighl 200 Asan Ot 1LLE

(s
Underestimating the facilities

problem

Underestimating: the impact on team interaction
lUnderestimating: the difficulty of changing
Crwning too many desks, computers

Suggestion: carpe wrenchum

Change everything

Too much change, all at once

Too little change, slowly

Story: Working on-site at our customer in typical open
office plan (cubes).

Worst of both worlds: enough barrier to inhibit
much technical collaboration.

Enough barrier to make people have some sense
of privacy and to talk inappropriately.

Story: cardinal sin (liability of some sort) to mess with
cubes
carving decent space out of the cubes

test automation, iterations, stories, pairing, ...

risk of incremental change
nothing much changes
new problems aren’t addressed
skeptics see it as a passing fad

Satir change curve

Being stifled by existing culture

Setbacks, expectations, visibility
Pressure to conform, morale

Suggestion: physically co-locate (perhaps offsite) to start

AO story: easier to start from scratch than change culture

IBM PC story

Dyno host project: 6 dev, 9 months, onsite at AO, pairing
AO-Bepco, 1 week iterations, transition back in last
month, agile nucleus

Basement team room story: risk of invisibility, scattering
team to thin later, need to be more conscious of spreading
the word

Tools

Bad tools discourage good practices
Buying a tool to make you agile
Buying testing tools

Using more tool than you need

Mot automating the build on day |

n
Bad tools discourage good practices

“We shape our tools and afterwards our tools shape us.”
Marshall Mcluhan

Bend the tools to the practice, not vice versa
Source control
Languages

Suggestion: don't over-estimate the difficulty or under-
estimate your developers

e gl 0.,

McLuhan: Canadian communication theorist, educator

Story: Visual Source Safe is setup so that each developer
has their own repository. They don't commit even daily (no
need), integration is infrequent, code lacks genuine
source control.

Story: One big room, dev pairs, testing. SCC with locking
means interruptions, manual hand offs, checking in non-
compiling code.

Story: Language and unit test suite requires adding a new
test to three places in two files. Developers make fat tests
as a result. Code-generation helps solve.

Buying a tool to make you agile

It’s easier to spend money than to think, learn, or change

Don't automate something you haven't done manually
several times (at least)

Don't guess about what you'll need just to justify a ool

Buying testing tools

Mot unigue te, but a commeon agile adeption pitfall

Confusion goes like this:
agile means testing
testing is about finding bugs
regression testing requires automation
So we need to buy a testing tool!

Suggestion: build or borrow

Tools don’t make you agile
especially true for big, all-in-one, complicated,

religious-conversion tools

| have heard the statistic widely quoted that 40% of
purchased testing tools sit on the shelf, unused

Testing in agile is a whole lot more than finding bugs

It’'s more of a development activity

[4] like the simple design practice, don’t assume you’re
gonna need it

Using more tool than you need index cards, whiteboards, paper, daily meeting

Two commeon errors AO story tracking: index cards -> time tracking tool ->

= delusions about what you're going to need BaseCamp -> ExplainPMT
* feeling you need to build your own tool

Start with the simplest thing that could possibly work
Escalate only after you feel some pain
Have a range of tools

Exception: not automating the build first

Cageighl 05 Asan s 1LLE

n from low-tech, easy to more complicated
. ; cards and colored labels

Project Status Tracking time tracking tool

BaseCamp collaboration service

ExplainPMT web app

(s
Not automating the build on day |

Push butten builds start paying off immediately

Manual builds make it hard to flex staff

Hard to find the time later

Project build knowledge is essential and should be explicit

Suggestion: faver build code over READMEs

Magic Totems

Shallow iteration adoption
Missing the point of snacks

Holy index cards

Confusing phases with iterations

payoff from first day - why not start immediately?

customer more understanding about ramp up than slow
down

build code is better than a README (the one-line
README)

[a) probably not worse than before, but also not much better

Shallow iteration adoption

Declaring an iteration peried (1, 2, 3 weeks) but...
* not delivering software at the end
* not having customer pricritize development
* consistently accepting more work than can be done
* not completing the work you identify
* not testing the work you tackle

Don't expect to benefit from iterative development

4] space doesn’t have to be a lounge - just a different part of

§i = the room
Missing the point of snacks

Story: company learns snacks are “XP”. buys individually
wrapped snacks. developers take snack, eat alone at
desk. Snacks first to be cut in budget woes.

It’s not about free food

The point: communal activity, moving, sharing, talking,
bonding, brainstorming

Suggestion: bulk snacks, a separate place

Holy index cards

Adopting the distinctive elements of agile development
doesn’t bring you the benefits of agile practices

Cargo cults

Confusing phases with iterations

Phase: determined by business needs
lteration: determined by development needs

Suggestion: be strict in your consistent use of the terms

the concepts are distinct, both important

confusing the terms confuses the concepts

Misconceptions

Using the wrong model

Trusting the professors

Treating development like widget building
Treating developers like clones
Confusing labor rate with labor cost
Team size

Ciageighl 00 Ap Ot 1LLE

Using the wrong model

Software Engineering comes from
* Engineering projects (hardware, software, systems)
* Huge scale {1000s of persen years)
= A time of low-level languages and tools

What to do with idle programmers?

The page nobody read

Suggestion: consider software craftsmanship

Capneighd S0

the days of relatively low-level languages and tools

Pete McBreen’s book on Software Craftsmanship is a
good starting point

"l believe in this concept, but the
implementation described above is
risky and invites failure.”

Winston Royce

“Managing the Development of Large Software Systems"
|EEE WESCOM, August 1970

Winston Royce

“Managing the Development of Large Software Systems”
IEEE WESCON, August 1970

Trusting the professors

Commaon to see a nearly reflexive assumption that the
way it's taught at university is an achievable, effective ideal
{academic inadequacy)

The vicious cycle
Trying to do X (some waterfallish practice)
Failing on the project
Castigating self for not being more disciplined
Vowing to do more of X next time

Suggestion: understand and talk up the discipline of agile

Cigiy=ighd 2058,

n
Treating development like widget

building

Building widgets or software both reguire
= engineering and design
* manufacturing

What this says about specialization of roles

Essay by Jack Reeves from The C++ |ournal in 1982 sums
up these ideas very nicely

agile as “just hacking”, undisciplined, ad-hoc

the problem: similar on the surface

the point: software is all “hard stuff’ , manufacturing is
trivial

design takes place while you’re programming, whether

you acknowledge it or not

See Bob Martin’s Agile Software Development book for a
copy

Treating developers like clones

Companies may treat developers as substitutable units
according to the TLAs on their resumes, or the
certification of their processes

Results in:
* seat-in-butt contracting
= forming and destroying internal teams per project
= focusing on hourly rate
* failed outsourcing

Coageighl 200 Asan Ot 1LLE

n
Confusing labor rate with labor

cost

Labor rate -- the cost of an hour of work

Labor cost -- the people portion of the cost of getting a
system built

developers are people

the difference in most talented and average is dramatic

ultimately it all comes down to good people

Team size

Assuming you need a large team

Q3M study shows otherwise

QSM Study

Consultancy specializing in measuring, estimating, and
contrelling software development

* Database of 4000+ projects

= 2005 study on schedule vs team size

= 564 information systems projects since 2002

= Divided inte small (< 5) and large (> 20) by team size

For projects of 100,000 5LOCs
= Average peak staffing of project: 32 ({large), 4 (small)

Total effort for projects (person menths)
= | 78 for large teams ($2.1 M)
= 15 for small teams ($0.3 M)

Coageighl 200 Asan Ot 1LLE

Particularly egregious with a high-functioning agile team

Question: did the large teams finish faster?

Results

Calendar time to complete project
9.12 menths for large team
8.92 months for small team

The one week shaved off delivery cost $1.8M

Explanations!

People

One-eyed kings in the land of the blind
Disrupting pecking crders

Agile is like a flashlight

Lack of perspective

lznoring the people issues

Mot acknowledging legitimate fears

Explanations?
Communication and coordination inefficiency
Greater rate of defects (5x)

Source:

“Haste makes waste when you over-staff to achieve
schedule compressions”

Doug Putnam, QSM, Inc.

4] Often use names like “agilistas”, refuse to adopt new
One-eyed kings in the land of the terminology

blind

Smart people viewed as successful, effective locally may
claim to know agile practices

= when they've only read some books

= and won't try them (“done that for years...")

* may covertly work to oppose them (threat reaction)

Suggestion: recruit them

4] almost no matter who you are: consultant, junior

. . : developers, team lead, manager
Disrupting pecking orders

you’ll find problems with disturbing the pecking order

Customers like early-and-often agile development practices are disruptive
Managers like |0x fewer bugs

De-throning the one-eyed kings is problematic
= they don't take it lightly
= you usually still need their expertise
= you may need their capacity
= you may not be able te get rid of them

Agile is like a flashlight

Shining a flashlight in dark corners reveals scary things
Cockroaches are survivors

Suggestion: be prepared to manage

Lack of perspective

A teamn or even a whole company can have a very narrow
perspective. Danger signs include

* low turnover

* limited exposure to new ideas

* belief that things are different for them

= pride and confidence in their track record, abilities

Suggestion: leadership required

pairing, one big room, build and test automation - people
know what you’re doing, what you know, what you’re weak
in

be prepared to handle personnel problems - agile won’t do
that

Such a company may do pretty well, probably doesn’t
have major disasters

Not Invented Here - common reaction

Story: I've heard of companies that construct committees
to “evaluate” new ideas, convince themselves that they
couldn’t benefit from change, spend a lot of time

protecting the corporate ego

Risk: losing out on doing even better, doing it more
efficiently, having more fun

leadership: challenging them to do better, travel budgets,

The bad news is that the engineering practices are the

: : easier part
lgnoring the people issues

The people, politics, management, communications,
customers are the hard part

TDD, simple design, pair pregramming, refactoring,
continuous build Agile exposes developers to customers. This means you
need developers that have broader skills including the

The bad news “softer” stuff

People, politics, management, communications, customers

Suggestion: hire for and train to the soft skills

4]

this is why we like the craftsmanship model

Not acknowledging legitimate fears Source: “Planning Extreme Programming” by Kent Beck,

Martin Fowler

Agile returns the human element to software
development

Developers and customers are human. Humans have
legitimate fears

Mot acknowledging and addressing these fears is risky

Customers fear...

will ask for the wrong things

won't get what they asked for

will pay too much for what they get

won't know where the project really stands

won't be able to change their minds if their business changes

Coageighl 200 Asan Ot 1LLE n

Developers fear...
being asked to do more than they can in a given time period
being asked to do things they den't know how to do
being asked to solve hard problems alone
being asked to do things they know are wrong
being asked to do things they know are a silly waste of time

being given responsibility but no authority

Coageighl 200 Asan Ot 1LLE

