
WAY BETTER ERROR
HANDLING IN C USING

CEXCEPTION
ERROR HANDLING IN C IS OFTEN UGLY

EXCEPTION HANDLING IS KINDA PRETTY

MIKE KARLESKY
ATOMIC EMBEDDED

KARLESKY@ATOMICEMBEDDED.COM
@MIKEKARLESKYGLSEC 2011

1

* Using “error” and “exception” in a loose, semi-interchangeable way for purposes of this talk.
* Concepts apply to any programming language, concentrating here on C specifically.

If you’re using C regularly, you’re likely doing low level system software or embedded
systems work. This talk is especially for you.

http://atomicembedded.com
http://twitter.com/mikekarlesky

AND AWAY WE GO

WE WILL COVER:

SOME HISTORY & A LITTLE MATH

UGLY ERROR HANDLING IS UGLY

CONCEPT OF EXCEPTIONS & BENEFITS OF EXCEPTION HANDLING

ADDING EXCEPTION HANDLING TO C PROJECTS WITH CEXCEPTION

CODE EXAMPLES

WE WILL NOT COVER:

IN-DEPTH MECHANICS OF CEXCEPTION (UNDER THE HOOD)

2

* There’s plenty of great documentation available with CException. It’s also only a single
source and two header files (one of which is optional) — very easy to digest.

HISTORY LESSON

MATHEMATICS HAD A BABY & NAMED IT COMPUTER
SCIENCE

"THE MATHEMATICAL CONCEPT OF A FUNCTION
EXPRESSES THE INTUITIVE IDEA THAT ONE QUANTITY
(THE ARGUMENT OF THE FUNCTION, ALSO KNOWN AS
THE INPUT) COMPLETELY DETERMINES ANOTHER
QUANTITY (THE VALUE, OR THE OUTPUT). A FUNCTION
ASSIGNS EXACTLY ONE VALUE TO EACH INPUT OF A
SPECIFIED TYPE." (WIKIPEDIA)

3

In pure mathematics, functions are great for dealing with the abstract concepts of numbers
and transformations thereof. However, in the physical world of processors, sensors, and
limited resources, functions are not capable of cleanly accommodating error conditions that
prevent input to output transformations.

BIG PROBLEM
SO WHAT TO DO WITH ERROR CONDITIONS THAT PREVENT

THE MAPPING OF C FUNCTIONS’ INPUTS TO OUTPUTS?

4

Examples:
 - Your heap runs out of a memory as you allocate a data structure within a function
 - A function’s input parameters create a divide-by-zero condition in a later division
operation
 - A sensor is damaged and produces nonsense values

Low-level and embedded systems are particularly susceptible to dealing with all manner of
specialized and even unforeseen error cases (i.e. at times difficult to even plan for them all).

CRAZY UGLY ERROR HANDLING

SEMIPREDICATE PROBLEM

MULTIVALUED RETURN

GLOBAL EXIT STATUS

HYBRID TYPES

NULLABLE REFERENCES

OUT-PARAMETERS ARE CLUNKY

RIDICULOUS AMOUNTS OF NESTING

UNIT TESTING & COVERAGE TESTING IS COMPLEX

5

“A semipredicate problem occurs when a subroutine intended to return a useful value can
fail, but the signaling of failure uses an otherwise valid return value. The problem is that the
caller of the subroutine cannot tell what the result means in this case.” (Wikipedia)

Multivalued returns: A data structure of some sort containing both a success/fail status as
well as the meaningful output of the function itself.

Global exit status: Just like it sounds. Probably a bad idea — even more so in multi-process /
multi-threaded systems.

Hybrid types: A data type wider than range of values to be returned by function and/or
embodying some ad hoc scheme of flags, masks, etc to segregate success/failure
information from meaningful function output. This becomes especially painful to deal with
when passing codes up through multiple layers of software / function calls.

Nullable references: If everything is a pointer, NULL can signify error cases. However, we all
know pointers are delicate things to work with responsibly; an entire system of pointers is a
bad idea. Further, a NULL pointer is often itself a useful value; overloading its meaning leads
to complication. Further still, only a single error value is not particularly useful in
distinguishing what to do with error cases.

Out-parameters (filling a “return” value by reference passing) are just ugly and violate the
simplicity of the construct of a function. Out-parameters usually reveal poor design and/or
the very issue we’re addressing in this talk.

Any of the preceding solutions to the semipredicate problem cause complex code that’s
difficult to understand, maintain, and test.

LOVELY EXCEPTION HANDLING

EXCEPTION: ERROR CASE THAT INTERRUPTS/PREVENTS
NORMAL EXECUTION

ORTHOGONAL OR OUT-OF-BAND TO FUNCTIONS

“RAISING” OR “THROWING” AN EXCEPTION IS LIKE
TELEPORTING OUT OF FUNCTION SCOPE

6

Errors that muck up clean execution of our functions are... exceptional cases.

A function can "raise" or "throw" an exception. Conceptually, the exception leaves the scope
of the function (processing stops) and can then be caught and handled elsewhere in software.

In general, an exception is handled (resolved) by saving the current state of execution in a
predefined place and switching the execution to a specific subroutine known as an exception
handler. Depending on the situation, the handler may later resume the execution at the
original location using the saved information. (Wikipedia)

BENEFITS OF EXCEPTION
HANDLING

REDUCES ERROR HANDLING CONDITIONAL LOGIC &
NESTING

ALLOWS RETURN VALUES TO BE RETURN VALUES

STREAMLINES & CENTRALIZES ERROR HANDLING

7

With exception handling, only one “master” handler is necessary for any specific exception no
matter how many times it’s thrown in your code. Additionally, there is no need to check for a
particular error in each place it may occur all along a call trace path. Throw an exception in
one place. Catch it in one place. All production code in-between can be oblivious to
exceptional error cases.

Catching and rethrowing allows some flexibility in smartly handling retries and error
logging / reporting.

CEXCEPTION

C LANGUAGE DOES NOT SUPPORT EXCEPTIONS

EXCEPTIONS EMULATED WITH setjmp() & longjmp()
(#include "setjmp.h")

CEXCEPTION IS JUST ONE AVAILABLE LIBRARY
(BUT IT’S MATURE AND WELL-TESTED)

CMOCK & CEEDLING: BAKED-IN CEXCEPTION SUPPORT

8

C++, Ruby, Java, other modern languages support exceptions. C does not.

setjmp() and longjmp() are standard C library calls that provide non-local jumps: flow
control outside usual subroutines & return sequence paradigm. setjmp() saves current
execution environment in a platform-specific data structure frame on the stack. longjmp()
restores program state to that frame stored by setjmp().

CException wraps up setjmp() and longjmp() calls with a little bit of code and some macros
so that a “Try/Catch” (i.e. exception handler) saves execution state to which a “Throw” jumps
back to upon exceptional error cases.

CException works “out of the box” (i.e. compiles) with minor requirements. All you need to do
is define a unique list / enumeration of exception IDs for use in your project and compile /
link in CException. With just a touch more configuration, it can also work with multi-threaded
or multi-tasking systems: connect up routine to supply unique ID per thread or task (i.e. per
stack).

No explicit support for “finally” block at present though you can fake it with a bit of
conditional code to catch an exception, execute “final” code, and rethrow exception.

CException only uses primitives for exception IDs. To keep things lean, it does not attempt to
work with custom structures to report more detail like higher level languages usually do. The
primitive used is configurable (to save memory if needed).

For those who’ve adopted unit testing, particularly interaction-based unit testing, the
mocking tool CMock supports CException handling directly. In addition, the test & release
build environment tool Ceedling supports CException (and CMock) as well.

CONTRIVED EXAMPLE:
UGLY ERROR HANDLING

9

CONTRIVED EXAMPLE:
LOVELY EXCEPTION HANDLING

10

CEXCEPTION.SOURCEFORGE.NET

THROWTHESWITCH.ORG

11

CException is offered under the MIT License. You should have no problem incorporating it
into your personal or commercial development project.

http://cexception.sourceforge.net
http://throwtheswitch.org

