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Overview of oncRNA Profiling and AI-Driven Model for Cancer Prediction

Goals

Methodology

• We collected 3,317 serum samples from individuals with known cancers of 

the bladder (n = 164), breast (n = 220), colon and rectum (n =143), kidney 

(n = 293), lung (n = 295), prostate (n = 96), pancreas (n = 346), and 

stomach (n = 286), as well as donors with no history of cancer at time of 

collection (n = 1,474). 

• Patients had provided informed consent and contributing centers had 

obtained IRB approval.

• We used 0.5 mL serum aliquots to generate and sequence smRNA libraries 

at an average depth of 20 million 50-bp single-end reads. Individuals were 

split into age-, sex-, and smoking status-matched training (1,377 cancer; 

1112 control) and test (466 cancer; 362 control) sets. We then profiled all 

the serum samples with our catalog of TCGA-derived oncRNAs2.

• We trained generative AI models with batch effect removal, library-size 

estimation, and expression normalization modules to predict cancer 

presence and tissue-of-origin (TOO) through five-fold cross-validation 

within the training set. For individuals with cancer and high-confidence AI 

prediction, we also reported TOO.

• We evaluated the generalizability of our model by predicting cancer status 

and TOO in the held-out test set. Predictions were averaged across the five 

models optimized on the training set folds.

• Develop and validate an artificial-intelligence (AI)-driven blood test for cancer 

detection in multiple cancers across a range of cancer stages. 

• Build and evaluate a cancer tissue-of-origin classification model using each 

patient’s serum-oncRNA profile.

Background

• Orphan non-coding RNAs (oncRNAs) are a novel category of small RNAs 

(smRNAs) that are frequently detected in cancer and largely absent in non-

cancerous tissues. 

• First identified in breast cancer samples from The Cancer Genome Atlas 

(TCGA)1, novel oncRNAs have, since then, been discovered in additional 

cancer tissues from TCGA and validated in an independent cohort of tumor 

and adjacent normal tissues2.

• We recently assessed the oncRNA content of serum and demonstrated their 

potential to detect colorectal3, breast4, and lung5 cancers in a liquid biopsy 

strategy. These investigations, however, have been limited to single cancer 

cohorts, and the broader applicability of oncRNAs as biomarkers in a single 

multi-cancer blood test has yet to be determined.

• In this study, we investigate the utility of oncRNAs as serum biomarkers for 

early cancer detection across eight cancer types.

Result 2: Discrimination Between Cancer Patients and Cancer-Free Controls in Serum Across Cancer Diagnoses

Figure 2. Overall Model Performance by ROC and Sensitivity at 95% Specificity

• (A) The ROC curve demonstrated an AUC of 0.96 (95% CI: 0.96-0.97) in the training set, and (B) an AUC of 0.97 (95% CI: 0.96-0.98) in 

the test set. AUC 95% confidence intervals were calculated by bootstrapping.

• (C) Sensitivities at 95% specificity for the training set (purple) and test set (orange) stratified by tumor stage. Confidence intervals report 

the 95% confidence intervals calculated using the Clopper-Pearson method within each group. Bar plots in the top panel show the number 

of samples corresponding to each tumor stage and training/test set.

Result 1: Ability of oncRNA-Based Model for Prediction of Overall Cancer Status in Serum

Study Demographics

Characteristics
Training Set Test Set

Cancer Control Cancer Control
Total (n) 1,377 1,112 466 362

Age (mean, SD) 62.3 (12.2) 58.6 (12.8) 62.2 (11.6) 59.3 (11.5)

Sex (n, %)
Female 652 (47.4%) 539 (48.5%) 209 (44.8%) 190 (52.5%)

Male 725 (52.7%) 573 (51.5%) 257 (55.2%) 172 (47.5%)

Cancer Stage
(n, %)

I 507 (36.8%) – 165 (35.4%) –

II 437 (31.8%) – 152 (32.6%) –

III 254 (18.5%) – 96 (20.6%) –

IV 179 (13.0%) – 53 (11.4%) –

Cancer Diagnosis
(n, %)

Lung 221 (16.0%) – 74 (15.9%) –

Gastric 215 (15.6%) – 71 (15.2%) –

Pancreas 255 (18.5%) – 91 (19.5%) –

Kidney 220 (16.0%) – 73 (15.7%) –

Colorectal 106 (7.7%) – 37 (7.9%) –

Breast 165 (12.0%) – 55 (11.8%) –

Prostate 72 (5.2%) – 24 (5.2%) –

Urothelial 123 (8.9%) – 41 (8.8%) –

Result 3: Model Accurately Predicts Tumor Tissue-of-Origin for Cancer Patients within Serum
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Figure 3. Model Performance By Cancer

• Our model had high accuracy (AUC ≥ 0.94), demonstrating robust prediction across eight cancer types, within both the training (A) and held-out test (B) sets. 

• AUCs ranged from 0.95 (95% CI: 0.92–0.98) in urothelial cancer to 0.99 (95% CI: 0.98–1.00) in lung cancer within the test set (B).

• Sensitivities at 95% specificity were lowest for urothelial cancer (0.71, 95% CI: 0.54–0.84) and highest for lung cancer (0.99, 95% CI: 0.93–1.00) in the test set (B).

Figure 4. Performance and Score Distribution of the Tissue-of-Origin Model

• (A) For samples with cancer tissue-of-origin prediction, our held-out testing cohort had an accuracy of 0.88 (95% CI: 0.84-0.92) using the top predicted cancer and 0.95 

(95% CI: 0.92-0.97) for the top two predictions. 95% CIs were computed through bootstrapping. The baselines shown in gray represents the expected performance of a 

random guess given cancer prevalence within our study. (B) The heatmap shows the predicted scores of the model for each sample and cancer type.

Conclusions

• Our results show that circulating serum oncRNAs captured through a liquid biopsy assay can be used 

to accurately detect a shared cancer signal in a single, multi-cancer early detection test.

• We also demonstrate that a multi-modal generative AI model trained on oncRNA profiles can robustly 

and accurately predict cancer tissue-of-origin within serum for samples with detectable cancer signals.

• Given the limitations of retrospective studies and the use of frozen, archival samples, we plan to 

further validate our results in the future through a larger, prospective study. 

This presentation is the intellectual property of the author/presenter. Contact them at info@exai.bio for permission to reprint and distribute.

Figure 1. Schematic of oncRNA Profiling and Modeling Pipeline  

• Our generative AI model utilizes tumor-derived oncRNAs discovered in TCGA 

tissue samples for downstream applications in serum.
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