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SCIENCE INSIGHTS

The Essential Components of the 
Downscaling Toolbox

Abstract
Understanding the impact of climate change on businesses and economies is an urgent need for today’s 
planners and policy-makers. When applied judiciously and with scientific expertise, downscaling offers the 
best near-term path for linking large-scale changes in climate to regional and local impacts.

This document provides a brief overview on the history and science behind downscaling. It describes the 
application of empirical/statistical, dynamical, and stochastic downscaling approaches to resiliency planning 
and risk management use cases across multiple public- and private-sector segments. It offers some pros and 
cons of each approach.

We contend that designing a superior downscaling strategy requires flexibility and a toolbox of solutions. No 
single approach to downscaling is best for all perils; a range of capabilities and approaches is needed. Use 
cases motivate the need to downscale climate model data in ways that expertly preserve the integrity of 
the large scales, quantify uncertainty, and add impact-level information to support decision-making across 
the economy.
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For climate and data scientists seeking more precise physical risk analysis, no “one size fits all.”
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Introduction
The practice of taking coarse environmental information that comes from Global Climate Models (GCMs) 
to finer spatial and temporal scales characteristic of impacts on resources, infrastructure, and individuals, 
is called downscaling. Climate models typically simulate the Earth’s atmosphere, ocean, land surface, and 
cryosphere at one degree (or greater) spacing in latitude/longitude (approximately 110 km), except for special 
experimental implementations. Output data sets are most often in the form of monthly average, maximum, 
and minimum values. Some output is stored as daily quantities, while very few retain the information needed 
to simulate the diurnal cycle. Downscaling aims to fill in the temporal and spatial scales not represented in 
the climate model and its output, thereby providing more realistic variability that captures realistic impactful 
events. In a canonical example, daily rainfall is downscaled to anywhere between one and 30 km and, possibly, 
hourly time intervals. Very few climate model output variables are stored at sub-daily time intervals. While it’s 
true that downscaling cannot address structural deficiencies in GCMs (e.g., Fiedler et al., 2021), when applied 
judiciously and with suitable scientific expertise, it provides the best near-term path for linking large-scale 
changes to regional and local impacts. Given a set of GCM projections and, ideally, a large set that includes 
ensembles, those downscaled fields of geophysical parameters, including rainfall, temperature, winds, etc., 
can be used to predict hazardous conditions on the ground at the scales that matter most. The scientific 
expertise in application is needed to ensure that methods and assumptions are understood and correctly 
applied, and relevant uncertainty is captured and communicated.

Climate downscaling can be based on empirical, dynamical, stochastic, or a combination of methods. In an 
early summary article by Hewitson and Crane (1996), the authors distinguished between empirical techniques 
and process-based techniques for downscaling; empirical techniques are statistical or based on ML/AI, and 
process-based (or dynamical) techniques leverage models that solve equations based on first principles. 
Stochastic techniques are most commonly used to generate large samples of synthetic event realizations; 
they are rooted in statistics, but we distinguish them here because they are meant to generate event 
distributions directly.

Representative use cases
Use cases across the economy motivate the need for downscaling climate model data in ways that preserve 
the integrity of the large scales while adding impact-level information to support decisions. See Figure 1 on 
page 3 for a list of representative use cases.

A non-rigorous downscaling primer
This brief history of the evolution of downscaling includes some commentary on the pros and cons of 
various approaches. The discussion supports the use-case applications in Figure 1, and provides the basis 
for developing capabilities that leverage the various approaches. A more expository, though nontechnical, 
source for downscaling information is available in a recently published book (Kotamarthi et al., 2021), which 
we learned of while writing this white paper. The book reinforces several of the points argued here, with focus 
toward the most typical downscaling approaches in the literature. Although a book can’t cover everything, it 
necessarily narrows the view to a range, wide but not exhaustive, of published work.

Earth scientists have been using statistical methods to predict local weather conditions from large-scale 
numerical predictions and simulations for decades. Historically, shortcomings in computational power 
limited methods to a broad class of statistical techniques. Linear, multi-linear, and other variants such as 
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Insurance Use case: Conduct portfolio stress tests and collaborate with clients to recommend risk engineering.

Recommended solution: Statistical downscaling on portfolios that cover large geographical areas and 
multiple perils to identify risky portfolio components.

Regional to local dynamical downscaling, combined with statistical or machine-learning-based bias 
correction to preserve the spatio-temporal correlations needed for rigorous risk engineering.

Banking Use case: Understand the climate risk of financial assets (mortgages, mortgage-backed securities, and 
bonds), based on underlying collateral/credit risk.

Recommended solution: Statistical downscaling on portfolios that cover large geographical areas and 
multiple perils to assess portfolio risk.

Asset management Use case: Quantify and optimize asset value exposure to physical climate risk across global portfolios, using 
asset identifiers (including CUSIP, FIGI, and others) to focus on efforts with the largest resiliency ROI.

Recommended solution: Statistical downscaling on portfolios that cover large geographical areas and 
multiple perils to quantify value at risk.

Real estate Use case: Incorporate climate as critical investment criteria and allocate capital to improve resiliency for 
specific developments.

Recommended solution: Statistical downscaling on real-estate portfolios that cover large geographical 
areas and multiple perils to identify priority investment areas that are low risk, and prioritize resilience 
improvements in areas that are high risk.

Regional to local dynamical downscaling, combined with statistical or ML-based bias correction to 
preserve the spatio-temporal correlations needed to assess resiliency and planned mitigations for specific 
developments.

Retail Use case: Avoid downtime and physical damage by retrofitting existing assets and determining new areas 
for expansion to stay ahead of changing climate risk.

Recommend solution: Statistical downscaling for multiple perils on the portfolio of retail locations to 
identify high-risk locations.

Regional to local dynamical downscaling, combined with statistical or ML-based bias correction to preserve 
the spatio-temporal correlations needed to assess business and supply chain interruptions.

Industrial Use case: Quantify and manage the changing frequency of business interruption costs due to climate perils 
striking upstream suppliers anywhere in the world.

Recommend solution: Statistical downscaling for multiple perils on the portfolio of industrial locations to 
identify high-risk locations.

Regional to local dynamical downscaling, combined with statistical or ML-based bias correction to preserve 
the spatio-temporal correlations needed to assess business and supply chain interruptions.

Power and utilities
Renewable and thermal 
generation

Use case: Integrate climate change effects on the long-term efficiency of thermal and renewable power 
generation assets into planning assumptions.

Recommend solution: Statistical downscaling to identify regions with the greatest long-term 
production potential.

Regional to local dynamical downscaling, combined with statistical or ML-based bias correction to preserve 
the spatio-temporal correlations needed for detailed current and future power production predictions.

Power and utilities
Grid resiliency

Use case: Integrated grid planning that includes physical risks in a changing climate.

Recommend solution: Regional to local dynamical downscaling combined with statistical or ML based 
bias correction to assess physical risks from individual asset to grid scale.

Figure 1  A table of representative use cases and recommended solutions for downscaling across industries.
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logistic regression provide an example set of methods. Given sufficient observational data, these empirical 
approaches simultaneously correct simulation or forecast errors, and provide information relevant to 
individual locations (such as an observing station). A classic example is the long-used Model Output Statistics 
approach employed by the National Weather Service (Glahn and Lowry, 1972).

During the 1990s, the climate modeling community evolved the methods applied to weather forecasting and 
adopted the term downscaling. Scientists and statisticians recognized that traditional statistical models are 
limited by their underlying assumptions, and would eventually prove inferior to less constrained approaches 
such as Artificial Neural Networks and the physical fidelity afforded by dynamical approaches (Hewitson and 
Crane, 1996).

Resolution or precision, fidelity to the real world, and both deterministic and probabilistic accuracy vary widely 
among the different approaches. The details of those variations may bear on a particular use case for physical 
hazard data. Computational demands, applicability to specific use cases, and requirements to simulate 
individual hazards can also vary widely. While statistical and ML-based downscaling can provide information 
suitable for identifying regions currently at the greatest risk, and/or those with the most rapidly changing 
risk profiles, the fidelity and accuracy needed to analyze risks to high-value assets in risky regions or cities 
is often best achieved by including dynamical downscaling as a part of the downscaling process. Dynamical 
downscaling can be paired with statistics and ML in hybrid approaches that may provide superior solutions.

All downscaling approaches have strengths and weaknesses, and fundamental limitations. Honest scientific 
interpretation, uncertainty quantification, and selection of methods for particular problems can help offset 
the limitations. Uncertainty quantification and communication can also help avoid over-confident risk 
assessments derived from downscaled climate information. Here are three broad approaches to downscaling, 
a view of the pros and cons of each, and applicability to use cases we experience in the market.1

Empirical downscaling—Statistical

Statistical downscaling has a long history, and has displayed this longevity because of its simplicity and 
flexibility. Statistical downscaling aims to build a map between coarse resolution information and the 
finer scales that contribute to them. In this case, coarse-resolution GCM climates are downscaled to finer 
scales seen by the climate as captured by observations or fine-scale simulations (i.e. a “target” data set). 
The approaches are interpretable and transparent. Physical interpretation is appealing to scientists, and 
transparency is appealing to regulators who may require assurance at the methodological level.

In practice, all empirical approaches are limited by the sparseness and quality of the target data set. For 
example, surface observations are accurate and temporally frequent, but cannot spatially resolve, or even 
sample, some events of interest. Target data sets, such as those produced by simulations, may be biased, and 
lead to a biased downscaling result. Though it is possible to account for spatial and temporal correlations 
with statistical approaches, those quickly become complicated and most statistical approaches break the 
spatial and temporal correlations that exist in nature. With some exceptions, statistical downscaling is used to 
provide information at one or more discrete locations that are assumed to be independent.

1 The references provided herein should be viewed as representative examples. They are far from an exhaustive accounting of 
the thousands of downscaling papers in the peer-reviewed literature.
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Because of its simplicity, purely statistical downscaling remains popular for some applications even today. 
Research, focused on developing and testing approaches to correcting biases and scaling the temporal 
variability from what a GCM simulates to what is observed, has continued to improve empirical methods. 
A common example results from combining bias correction with quantile mapping, which performs poorly at 
fine scales (Maurer et al., 2015), with spatial disaggregation (Wood et al., 2004). The combined Bias Correction 
Spatial Disaggregation (BCSD) and related approaches are still in wide use today. Analog approaches, where 
historical downscaled conditions are tied to historical large-scale conditions and by extension projected large-
scale conditions, are also widely used. A combined Bias Correction Constructed Analog (BCCA) (Maurer et 
al., 2010) approach, remains in use. Multiple other analog-based approaches exist, including the widely used 
Localized Constructed Analogs (LOCA) (Pierce et al., 2014). A key drawback to analog approaches is the 
reliance on a long-record downscaled reanalysis product. Those are revised only once every several years (at 
best), and by construction may not contain all possible future conditions, but it’s worth noting that analogs 
can include a spatial component.

Other methods receive regular attention, and one common result is that no single statistical downscaling 
method is superior for all physical variables (e.g., rainfall or temperature), time scales, or spatial scales 
(e.g., Teutschbein et al., 2011). Despite the continued attention, the fundamental drawbacks of statistical 
downscaling on their own cannot be overcome (e.g., Gutiérrez et al., 2013; Lanzante et al., 2018).

Stochastic downscaling

An attractive aspect of stochastic downscaling is applicability across a variety of space and time scales. For 
example, the occurrence of a high-impact phenomenon may be rare and require scaling in time, or climate 
model structures may not be capable of fully representing the phenomena due to coarse resolution in space 
and time. Often, stochastic downscaling methods are characterized as weather generators that explicitly 
utilize the probabilistic nature of physical phenomena to generate weather data time series at single, multiple, 
or field locations (Wilks, 2009).

Stochastic downscaling has been applied to physical phenomena on the space and time scales of tropical 
cyclones (Emanuel et al., 2008; Hall and Jewson, 2007; Jing and Lin 2020; Lee et al., 2018; Nakajo et al., 2014) 

Pros Cons

Straightforward to implement Limited ability to handle nonlinearity

Usually simple to understand and explain Limited ability to handle spatially and 
temporally correlated hazards

Computationally efficient Care must be taken when considering 
non-stationary relationships

Figure 2   Empirical downscaling–Statistical: strengths and shortcomings.
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to individual precipitation events (Burlando and Rosso, 1991, 2002; Burton et al., 2008; Wilks, 2009; Zhang 
and Switzer, 2007). Tropical cyclones are relatively rare events defined by complex physical processes, and 
climate models struggle to represent their physical characteristics. Stochastic methods to increase frequency 
and represent physical characteristics generate data for use in a variety of applications. While individual 
precipitation events may occur frequently, stochastic downscaling methods characterize the relatively small 
scale and rapid evolution in time of such events, which may be accentuated in special environments such as 
complex orography (Bordoy and Burlando, 2014).

While various types of stochastic models may be employed in downscaling methods, they share a common 
framework of parameter estimation and simulation. A common stochastic model applied to downscaling 
tropical cyclone activity is a multiple linear regression (MLR) model in which parameters such as minimum 
sea-level pressure, speed of motion, and wind characteristics are expressed using polynomials with stochastic 
terms (Hall and Jewson, 2007; Vickery et al., 2000). The MLR model parameters are estimated from data 
provided to the model and the stochastic term depends on residuals. Stochastic downscaling of tropical 
cyclone motion and speed can use probability density functions of the rates of change in tropical cyclone 
characteristics, which are functions of the parameter values at previous steps (Emanuel et al., 2006; Rumpf 
et al., 2007). Often the stochastic models are combined with observed or simulated environmental data to 
provide a hybrid stochastic-physical downscaling system that can generate time series of tropical cyclone 
location and motion, plus intensity and intensity change.

Stochastic downscaling methods have represented the arrivals, intensities, and durations of precipitation 
events as random processes represented using forms of the exponential distribution (Burton et al., 2008). 
Model parameters that identify relevant distributions are estimated using observed characteristics. For 
application to future scenarios, model parameters can be re-derived from future climate statistics obtained 
by applying a change factor derived from climate model outputs realized on grids that represent the large-
scale environmental factors.

Pros Cons

Computationally efficient Requires the most complete and robust 
data sets available.

Easily applied to ensembles and 
investigation of the intrinsic variability 
and uncertainty associated with high-
impact events

Can miss physical processes that may 
require a hybrid method to incorporate 
environmental data

Models are not bound to a specific 
temporal or spatial scale but can generate 
time series across a range of scales

Need serious consideration to determine 
the most appropriate stochastic model 
and estimation methods

Figure 3  Stochastic downscaling: strengths and shortcomings.
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Comparisons between stochastic and dynamic downscaled events (e.g., Brussolo et al., 2009) indicate that the 
two methods compare favorably in a statistical sense. Dynamic downscaling with high-resolution, regional 
climate models can in some cases be less skillful than downscaling with stochastic methods, due to difficulty 
in providing adequate boundary and initial conditions. Because of the computational advantage of stochastic 
downscaling, the methods can be used to take advantage of ensemble systems that allow for exploration of a 
broad range of scenarios and estimation of uncertainty. Because stochastic methods can be broadly applied 
across scales, and are significantly less computationally intensive than dynamic downscaling methods, 
they provide for capabilities that can investigate uncertainty, and multiple scenarios with advantages over 
dynamical and statistical methods.

Dynamical downscaling

Though it was in practice a decade earlier (Dickinson et al., 1989), by 1999 researchers were finding that 
atmospheric dynamical downscaling approaches were approximately equal in skill to statistical ones (e.g., 
Murphy, 1999). Dynamical, or process-based downscaling, typically relies on a state-of-the-art limited-area 
weather model configured to simulate finer spatio-temporal scales than are permissible in a global climate 
projection or historical reanalysis. Currently, one to a few kilometers is a typical resolution. Boundary 
conditions (see Figure 4, below) from the projection or reanalysis enforce some consistency of the downscaling 
model with the large-scales; further consistency and assurance that the downscaling model does not drift 
from the intended climate is often provided via augmentation with nudging techniques (e.g., von Storch et al., 
2000). Because dynamical downscaling often employs peer-reviewed geophysical models, the methods are 
also readily transparent, at least to the extent that the scientific community accepts a particular model. This 
provides the attractiveness of physical interpretability and ability to meet regulatory needs.

Figure 4  An example of dynamical downscaling and the influence of boundary conditions on precipitation based 
on a regional climate model over North America. The domain of the regional climate model is indicated by the solid 
black lines. Outside the domain is a global climate model, with larger grid boxes providing boundary conditions for the 
regional climate model with smaller grid boxes on the inside of the domain.
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As with statistical methods, different approaches to dynamical downscaling have been employed. The most 
direct approach embeds the limited-area model inside a GCM projection. Often, though, the output data 
archived from GCM projections (e.g., within the CMIP5 collection) is insufficient to initialize and provide 
boundary conditions to the weather model. The popular “pseudo global warming” method (Kimura and Kitoh, 
2007; Sato et al., 2007) avoids this, and has proven successful, but its reliance on a reanalysis as the foundation 
for driving the downscaling model means that simulations of future climates are inherently constrained by 
the historical reanalysis. Though the future mean states (e.g., a warmer regional climate) may support a 
greater frequency of impactful events in itself, the frequency of large scale states (such as heat waves) that 
bear on local extreme events cannot change beyond what’s available in the historical record. How severe this 
limitation is in practice remains an open question, and depends on the particular parameter of interest (e.g., 
temperature vs. rainfall). Both of these general classes of dynamical downscaling can be improved through 
bias-correcting the GCM, bias-correcting the downscaling model, or both.

As computational power increased and the models used to dynamically downscale improved in both 
resolution and physical fidelity, dynamical downscaling surpassed purely statistical approaches for many 
applications, and shine especially when physical fidelity in space and time is desirable (Vaittinada Ayar et al., 
2016). Even when using the pseudo global warming method, the resulting data output can inform changing 
characteristics of extreme events that affect intensity and duration (Prein et al., 2017). It has recently been 
proposed that the latest computational capacity available on supercomputers, and the maturity of variable 
resolution grids, for example, may diminish the importance of dynamical downscaling via nested modes in 
favor of native GCM resolution sufficient for policy purposes (Tapiador et al., 2020). While that may prove 
true in the future, the need for higher resolution simulations to represent hazard distributions remains a key 
component of the downscaling toolbox.

Pros Cons

Includes the nonlinearity and spatial 
correlations inherent in physical systems

Resolution must be sufficiently high 
to avoid regional and global model 
incompatibilities

Compound events can be 
modeled directly

Requires large and available archives 
from GCM’s to provide boundary 
conditions

Works well in combination with 
empirical downscaling

Traditional (lab-based) downscaling 
experiments are computationally 
expensive

Figure 5  Dynamical downscaling: strengths and shortcomings.
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Empirical downscaling—Machine Learning
ML is a natural evolution of empirical approaches; research with ML methods that would be called simple 
today has been active since at least the 1990s. More recently, ML has emerged in an attempt to replicate the 
power of dynamical downscaling, with the goal of similar physical fidelity but with greater power to scale 
and provide realization of the downscaled physical world at a fraction of the cost of dynamical downscaling 
approaches. These emerging ML-based approaches take advantage of the emerging maturity of complex 
approaches such as deep learning. Physical problems that are characteristic of climate science represent a 
relatively new application area for these more powerful algorithms.

The maturity of advanced ML algorithms has arrived with application to data that may not be constrained 
by the laws of nature, require physical explainability, or demand transparency in a regulatory environment. 
Conversely, all of these requirements must be met to appropriately handle extreme events that impact broad 
swaths of the economy and the general population. Care must be taken to avoid black-box solutions. For 
example, Vandal et al. (2019) recently found that a range of off-the-shelf ML algorithms did not fare well 
against traditional statistical downscaling. But results in the literature are mixed and other studies indicate 
promise; the primary lesson is that ML may prove useful or even lead to superior solutions, but these solutions 
should not be used in isolation and must be explainable.

Performance and interpretability of ML is predicated by constraining the algorithms to adhere to physics. The 
emergence of new sub-disciplines within data science called physics-informed machine learning, or similar 
sub-disciplines, aim to apply known physical constraints that may come from first principles or be observed. 
Interpretability implies transparency in the sense that algorithm behavior, process predictors, and sensitivities 
are explained and align with our understanding of the physical world. Those characteristics are needed in a 
regulatory environment.

Pros Cons

Large data assets can lead to high-quality 
empirical models

Requires large and clean data assets

Treatment of nonlinear 
processes possible

Requires expertise beyond 
statistical downscaling

Works well in combination with 
dynamical and statistical downscaling

Can be misleading when assumptions 
underlying the AI model are not satisfied 
by the data

Can potentially improve scalability 
and efficiency

Care must be taken to avoid black-box 
and non-physical solutions

Figure 6  Empirical downscaling–Machine Learning: strengths and shortcomings.
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Methods toward physics-informed data science are emerging. Constraining the objective function through 
regularization is one approach; a second is to restrict the structure of the ML model itself. Data must be 
cleaned, and reducing noise in noisy data is advantageous. Large sets of dynamical simulations provide the 
advantages of well-behaved data for training, but as with statistical approaches, these can introduce errors 
when the training data are biased. In both cases an explicit bias correction step is necessary.

Summary
While multiple approaches remain viable for downscaling, they each offer strengths (e.g., Vaittinada Ayar 
et al., 2016), and it has long been recognized that combining empirical and dynamical approaches yield the 
best outcomes; the strengths of both contribute to the best results (e.g., Colette et al., 2012; Vrac et al. 2012; 
Wood et al., 2004; and many others). In a simple example, the dynamical downscaling component provides 
realism in spatio-temporal correlations important to understanding impacts on multiple locations, while 
the statistical approaches can remove biases of various complexity, which are unavoidable in imperfect 
simulations of nature. Recent peer-reviewed literature is dominated by these hybrid approaches that draw 
upon the relative strengths of downscaling methods. Hybrids range from stochastic-statistical to dynamical-
statistical-ML combinations, and the variety of combinations is vast.

A “one-size-fits-all” approach to downscaling prevents optimal results across time and space scales, and 
physical parameter or hazard. Statistical distributions characterizing different parameters (e.g., precipitation 
versus temperature) may demand different methods. The physical scale of the hazard (e.g., damaging winds or 
flooding in an urban environment) may also dictate a particular path. A need to preserve spatial and temporal 
correlations observable in nature may require a dynamical downscaling component, while downscaling to 
multiple independent locations frees us from that.

Designing a downscaling approach requires flexibility and a toolbox of solutions. Credible scientific expertise 
in application, and uncertainty quantification, can help avoid the real potential for misuse of downscaled 
climate data. Finally, responsible businesses and public funding organizations will recognize that, while 
downscaling gives us the best information available today and for the foreseeable future, continued and large-
scale investments can drive climate science and modeling advancements that may in the long term relegate 
downscaling and its limitations to the dust bin. Downscaling provides the gap filler, which realistically may 
persist for longer than we can wait to act.
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