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The Earth’s changing climate 
affects every aspect of life 
on our planet. Anthropo-

genic, or human-induced, climate 
change has already caused and will 
continue to cause significant and 
widespread damage, beyond what 
might be expected from natural 
climate variability. While many of 
the impacts of climate change are 
expected to worsen in the coming 
decades, this is not some far-off 
mid- or end-of-century problem. 

As the most recent report 
of Working Group II of the 
Intergovernmental Panel on  
Climate Change (IPCC) notes 
(https://www.ipcc.ch/report/sixth-
assessment-report-workinggroup-
ii), there are already  global-scale 
changes to the structure of  
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different ecosystems, includ-
ing shifts in species range and 
changes in phenology. This  
also includes human systems, 
including the availability of water 
resources, food production, and 
health, and extends to the built 
environment and economic sectors, 
often disproportionately affecting 
the most vulnerable populations.

The World Health Organization 
(https://www.who.int/news-room/
fact-sheets/detail/climate-change-
and-health) notes increased deaths 
and poverty, and billions of dollars 
in direct costs to health, from cli-
mate change. The National Oceanic 
and Atmospheric Administra-
tion (https://www.ncei.noaa.gov/
access/billions/) has been tracking 
billion-dollar weather and climate  

disasters in the United States 
and their impacts since 1980. 
The decade of the 2010s saw the 
highest cost and loss of life from 
these events, with the average cost 
over the last five years an all-time 
record, nearly triple the inflation-
adjusted average annual cost. 

A recent White House Council 
of Economic Advisors blog post 
(https://www.whitehouse.gov/cea/
written-materials/2022/09/01/the-
rising-costs-of-extreme-weather-
events/) also discusses the rising 
costs of extreme weather events, 
focusing on the impact on eco-
nomic growth. The blog cites 
a growing number of econo-
metric studies attempting to  
quantify the economic impacts of 
climate change. The results of these  
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studies suggest not only that costs 
are increasing and impacts are 
widespread, but also that recov-
ering from disasters is far more 
difficult than previously thought.

Climate Risk Analytics
With the increasing recogni-
tion of the impacts and growing 
costs of climate change, there is 
a simultaneous growing demand 
for actionable assessments of cli-
mate risk from business, industry, 
and governments. Risk arises from 
the interaction between physical 
hazard, exposure, and vulnerability. 
Physical hazards can refer to any 
weather- or climate-related event 
that causes direct loss, includ-
ing health-related losses and  
damage to or direct loss of property. 
Physical risks can be contrasted 
with transition risks, which refer to  
the potential for losses that might 
arise from a transition to a carbon-
free economy. 

Climate risk analytics attempt 
to quantify the risks due to haz-
ards such as flood, heat, wind, 
fire, and other weather events 
that are evolving and becoming 
more frequent or intense with a 
changing climate. Climate risk 
analytics may be thought of as 
an extension of the long history 
of research on the impacts of cli-
mate and climate change (see the 
research summarized by Working 
Group II of the IPCC’s Fifth and 
Sixth Assessments. https://www.
ipcc.ch/reports/).

The assessment of climate 
risk is at the heart of climate 
risk analytics, and these assess-
ments can be used in a variety 
of use cases. One area involves 
risk assessment and management, 
and focuses on quantifying the 
impacts of extreme weather events 
on people, infrastructure, property, 
and assets, along with how those 
impacts are going to change in 
a future climate. An application 

centers on the key components 
of various networks such as those 
associated with supply chains, 
power generation and transmis-
sion, or even assets that define a 
financial portfolio. 

For example, Figure 1 displays 
locations across the world that sup-
port the supply chain for a major 
retailer; represents suppliers of 
raw materials, manufacturing, and 
distribution; and highlights flood 
risks in Asia and the Pacific region. 
(Flood heights are based on Jupi-
ter Intelligence’s Climate Score 
Global product.) With this kind 
of information in hand, companies 
can create resiliency initiatives and 
planning strategies that can ensure 
redundancy and business continu-
ity, and ultimately mitigate the risk 
that could endanger their opera-
tions and cause material impacts 
on their financial performance or 
even the broader economy.

To see more concretely how 
such analysis might be used, a blog 

Figure 1. Locations associated with supply chain of a clothing retailer. Shading reflects flood heights associated with 
200-year return levels in 2050 based on intermediate future greenhouse gas scenario. Gray shading indicates minimal 
water heights, yellow indicates water heights up to 3 m, red indicates water heights over 3 m.
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post from the consulting company 
Guidehouse discusses a frame-
work for assessing climate risk and 
identifying potential mitigation 
strategies using a hypothetical 
utility whose power distribution 
network is exposed to tropical 
storms (https://guidehouse.com/
insights/energy/2022/enhanced- 
c l imate-r e s i l i en c e-p lanning-
for-the-power-sector). The post  
discusses how potential losses to 
transmission infrastructure, sub-
stations, and distribution poles 
could be a risk from exposure to 
flood, wind, and heat; how that 
risk manifests; and how it increases 
in a changing climate using an 
intermediate future greenhouse 
gas scenario. 

Based on this assessment, the 
post includes concrete examples 
of measures that could be taken 
for each of these components and 
would minimize future risks and 
ultimately reduce the likelihood of 
outages and costs associated with 
those outages.

Another example is presented 
in Section 4.9 of the World 
Energy Outlook 2022 report of 
the International Energy Agency 
(IEA; https://www.iea.org/topics/
world-energy-outlook). The report 
discusses how the increasing fre-
quency and intensity of extreme 
weather events present major risks 
to energy infrastructure and sup-
ply. Highlighting four specific 
energy facilities in India, Viet 
Nam, northern Europe, and the 
southern United States, the report 
notes how changing flood risks can 
increase potential losses and dis-
ruption of services and highlights 
the advantages of investing in flood 
defenses. 

The report also notes reduced 
efficiency of power plants and 
strain on power systems caused 
by increasing temperatures and 
intense cold; impacts of chang-
ing wind speeds in regions with 
wind operations; and impacts  

of tropical cyclones on power 
transmission and distribution 
infrastructure, among others.

Another focus of climate risk 
analytics is on regulatory response 
and disclosure. There is a growing 
demand for companies to identify 
and disclose to investors and regu-
lators how risks from a changing 
climate could endanger their oper-
ations or cause material impacts to 
their financial performance and the 
broader economy. 

Many of these disclosures are 
following the guidance of the Task 
Force on Climate-related Finan-
cial Disclosures (TCFD; https://
www.fsb-tcfd.org/). For example, 
AstraZeneca, a global pharma-
ceutical company, provides infor-
mation about a number of their 
facilities around the world for 
heat, flood, wind, precipitation, 
and wildfire for a baseline period 
(1986–2000), 2030, and 2050, 
based on an intermediate future 
greenhouse gas scenario, as well as 
a broader assessment of physical 
and transition risks (https://www.
astrazeneca.com/Sustainability/
resources.html). 

JLL, a global commercial real 
estate services company, performed 
a similar analysis and reported 
the results in their 2020 Global  
Sustainability Report (https://
www.us.jll.com/en/about-jll/our-
sustainability-leadership/archive-
global-sustainability-report). 

Downscaling
A traditional approach for quan-
tifying and assessing climate risks 
features a top-down strategy. A 
global climate model (GCM) 
output provides the starting point. 
While these climate model experi-
ments are critical to the study of the 
Earth’s climate and how it could 
change with different assump-
tions about how greenhouse gases 
will evolve in the coming decades, 
the model output is typically on  

spatial scales that make it diffi-
cult to use that output directly in 
impacts studies (see Figure 2). 

Climate model output is often 
downscaled to provide climate data 
on spatial scales more appropriate 
for regional or local analyses. These 
higher-resolution downscaled data 
products are then incorporated 
into impacts modeling or other 
analyses that can be used to iden-
tify potentially adverse impacts or 
geographical areas of concern, as 
highlighted in the previous section.

A bottom-up approach is 
more appropriate for a formal risk 
analysis, and begins by identify-
ing vulnerabilities in a local system 
based on experience and historical 
weather conditions. Downscaled 
data products can then be interro-
gated to determine the likelihood of 
climate and weather conditions that 
would expose those vulnerabilities. 

Of course, these are simplistic 
characterizations of the different 
paths an analysis may take, and 
a more comprehensive approach 
where aspects of both top-down 
and bottom-up approaches would 
be preferred. However such assess-
ments are conducted, it is clear 
that downscaling GCMs is a criti-
cal component, and downscaling 
is more important to bottom- 
up approaches.

There are two broad classes of 
downscaling. Dynamic downscal-
ing incorporates regional climate 
models (RCMs), such as those 
associated with the Coordinated 
Regional Climate Downscaling 
Experiment (CORDEX; https://
cordex.org/). These RCMs are 
generally run over limited spatial 
domains using output from GCMs 
as boundary conditions. RCMs 
are valid climate models based 
on physical principles, but they 
can be computationally expensive 
to run and, as with GCMs, have 
their own biases that often have to  
be corrected. 
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A second approach is generally 
referred to as statistical down-
scaling, which also focuses on  
limited spatial domains but 
exploits empirical relationships to 
provide higher-resolution climate 
information. Statistical downscal-
ing can be cheaper to implement, 
but requires high-quality, high-
resolution training data sets and 
requires assumptions about how 
the empirical relationships must 
remain the same in future climates. 

Statistical downscaling can be 
thought of as a supervised learning 
or regression problem, with the goal 
of estimating an empirical function 
y ≈ g(x), where x represents coarse-
scale weather or climate features 
and y the finer-scale features. This 
can be done purely via observational 
data sets, including reconstructions 
and reanalysis data sets, or via con-
necting climate model output with 
observational data sets. 

A broad range of statistical 
regression methods has been used, 
including traditional linear regres-
sion, generalized linear regression, 
and generalized additive models, 
and—more recently— machine 
learning methods such as random 
forests and neural networks. 

Many downscaling algorithms, 
particularly when working with 
climate model output, also incor-
porate some sort of bias correction 
of the model output; for example, 
adjusting time series via a delta 
method or quantile mapping.

The focus of downscaling is 
often on creating daily, monthly, or 
even seasonal time series. It is also 
possible to downscale specific cli-
mate characteristics. For example, 
the right frame of Figure 2 shows 
an example resulting from creating 
a high-resolution (1 km) histori-
cal climatology of maximum daily 
temperature. For comparison, the 
middle frame shows the same field 
based on the ERA5 (https://www.
ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era5) gridded 
re-analysis product at 30 km, and 
the left frame highlights a GCM 
at 1º resolution. 

For this example, the point-
based weather station observa-
tions represent the local historical 
weather distributions and climate 
extremes more accurately. Hence, 
the image in the right frame of 
Figure 2 uses a machine learn-
ing-based spatial interpolation to 
connect the parameters of distri-
butions fit to the weather station 

observations (i.e., the fine scale y) 
to distribution fits for ERA5 (i.e., 
the coarse scale x). Other predic-
tors, such as features derived from 
a high-resolution digital elevation 
map or from remotely sensed data 
(land surface temperature, land 
cover, etc.), were also incorporated. 

The left frame shows the output 
of a GCM over the same area. In 
this case, the GCM has a cold bias 
and does not show the tempera-
ture response due to topography 
and urban heat island. However, 
it should be noted that changes 
in future temperatures projected 
by the GCM could be applied in 
this case using the delta method 
approach, thus providing a down-
scaled version of the coarse-resolu-
tion GCM projections.

Opportunities for 
Statistical Science
A wide array of opportunities 
exists at the intersection of sta-
tistical science, data science, and 
climate science. The study of the 
Earth’s climate, how that climate 
is changing, and the impacts of 
those changes are data-driven 
areas of research with data com-
ing from many diverse sources. 
Direct observations from weather  

Figure 2. Downscaling example highlighting portions of New Jersey, New York, Connecticut, Rhode Island, and 
Massachusetts. Left frame displays average maximum daily temperature from a GCM at approximately 1º resolution. 
Middle frame uses re-analysis data at 30 km resolution; right frame includes downscaled version at 1 km.
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stations, ocean and river gauges, 
and radiosondes, as well as remotely 
sensed observations from satel-
lites, for example, enable specific 
approaches. 

These observations are often 
restricted in space and time, and 
there is a demand for data on 
complete and regular space-time 
grids, which has led to the creation 
of climate reconstructions and  
re-analysis products that use 
numerical weather models to 
assimilate observations into a  
gridded product. 

Climate model experiments, 
such as those included in the most 
recent CMIP6, are another source 
of useful data about past, present, 
and potential future climates.

While statistical science can 
make contributions in many areas 
in addition to the downscaling 
problem discussed previously, two 
are worth being highlighted. 

The first is extremes. Much of 
climate change research has histor-
ically dealt with changes in mean 
temperature, but there is much 
interest in the tails of distributions, 
especially for perils such as pre-
cipitation and wind. There is also 
growing interest in more complex 
problems, such as compound haz-
ards in which multiple perils, such 
as precipitation, wind, and storm 
surge, can simultaneously lead to 
damage and loss, or the impacts of 
extreme weather and changes in 
extreme weather in spatially dis-
tributed networks. 

The ensembles of climate model 
output in different model experi-
ments are crucial resources in the 
assessments and the impacts of cli-
mate change, but the construction 
of these ensembles, particularly 
multi-model ensembles, does not 
fit nicely into the statistical concept 
of a simple random sample. The 
incorporation of these ensembles 
into an assessment of climate risk is 
challenging. Bayesian approaches 

that incorporate hierarchical mod-
els have been used. An alternative 
framework involves weighting. 

These approaches often attempt 
to balance the ability of the mod-
els to reproduce observed climate 
(higher weights) with dependence 
or similarity between the models 
(lower weights). This continues to 
be an open area of research.

Machine learning is also see-
ing a great deal of attention well 
beyond the downscaling prob-
lem. There is a long history of the 
use of machine learning in cli-
mate and weather research, and  
Climate Informatics (http://www. 
c l imate in f ormat i c s . o rg )  ha s 
improved the visibility of machine 
learning and col laboration 
between machine learning and  
climate science. Some exciting 
areas of research involve deep 
learning, physics-guided machine 
learning, and interpretable 
machine learning.

Final Remarks
The statistical sciences have had, 
and will continue to have, a criti-
cal impact on climate analytics as 
a growing field. Climate change 
is already affecting broad swaths 
of society and is projected to  
continue and, in many cases, 
increase in the future. Climate  
risk analytics is emerging as a 
powerful tool to help companies, 
governments, and other enti-
ties understand their climate risk 
and build resiliency in response. 
It involves significant collabora-
tion between data, climate, and 
other domain scientists, as well 
as software and data engineers, 
to develop the computational 
pipelines needed to build large-
scale, global downscaled data sets 
that are crucial to assessments of  
climate risk. 

This is very much a data-driven 
effort, and statistical thinking  
is a crucial component in  

addressing the uncertainty inher-
ent in the many science- and  
business-related questions that 
arise.  
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