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Abstract

Background: According to Centers for Disease Control and Prevention (CDC), approximately 20.4% of adults in the
US suffer from chronic pain1, with 7.4% reporting high impact chronic pain which is associated with decreased
quality of life, opioid dependence, and poor mental health2-4. Neuromuscular electrical stimulation (NMES) is a safe
and minimally invasive therapy which has been shown to aid in the management or relief of chronic pain, including
reducing pain from orthopedic conditions or procedures and improving the associated range of motion5-7.

Objective: This study aimed to evaluate the therapeutic effects of Neubie Direct Current NMES on self-reported
pain and range of motion and biometrics including resting heart rate, heart rate variability, and sleep quality in
patients with orthopedic pain.

Methods: Participants were recruited from multiple sites with access to the Neubie device. Measurements were
collected on 17 participants with current orthopedic pain, ages 22-61, using the Biostrap wrist-worn
photoplethysmography (PPG) device with in-application prompts for daily survey responses for seven weeks.
Following a two-week baseline, participants underwent a total of eight (8) Neubie sessions over approximately four
(4) weeks under the care of a certified Neubie specialist. Participants were followed for one additional week of
discontinued therapy to measure the lasting benefits of Neubie Direct Current NMES.

Results: A total of 833 days of biometric data were analyzed throughout the 7-week study duration. Analysis of
data throughout study phases showed improvements in self-reported pain and range of motion, in addition to
decreased resting heart rate (RHR), increased heart rate variability (HRV), and sleep efficiency.

Conclusions: Consistent application of Neubie Direct CurrentNMESn under the care of a certified specialist may

provide quantitative improvements in pain, range of motion, and physiological biometrics in a population of



orthopedic pain without neurological disease. Further research is required to establish the statistical significance of

these outcomes.

Background

According to Centers for Disease Control and Prevention (CDC), approximately 20.4% of adults in the US
suffer from chronic pain1, with 7.4% reporting high impact chronic pain which is associated with
decreased quality of life, opioid dependence, and poor mental health2-4. Neuromuscular electrical
stimulation (NMES) is a safe and minimally invasive therapy which has been shown to aid in the
management or relief of chronic pain and increase range of motion.

NMES is the application of an electrical current on the skin above a muscle tissue for the purpose of
activating muscle fibers and initiating a muscular contraction. This is

In January 2021, Neufit and Biostrap Labs launched a multi-site study to investigate the therapeutic
effects of Neubie Direct Current NMES treatment on self-reported pain, range of motion and biometrics
measured by the Biostrap wrist-worn photoplethysmography (PPG) device. Participants with
orthopedic-related pain, ages 22-61, were recruited from two sites in the United States with access to
the Neubie device and certified health professionals to conduct a total of eight (8) treatments over a
4-week period. Participants established a 2-week baseline prior to Neubie intervention and were also
followed for an additional week to assess the potential lasting or compounding physiological effects of
the therapeutic intervention. Treatment protocols were individualized with a perceived intensity of
stimulation ranging between 4-8 out of 10 in terms of participant-reported discomfort.

Methods

Treatment protocols included one initial evaluation session followed by 7 interventional sessions, with
2-3 sessions per week. Treatment session duration was roughly 1 hour per session for all 8 sessions. The
initial evaluation included a scan of the body using the NEUBIE and carbon fiber pads to identify areas
with greatest sensitivity/discomfort to stimulation. These locations were then used as the targeted areas
for the duration of treatments. During treatment sessions, electrode pads attached to the NEUBIE were
placed on targeted areas and intensity of electrical current was increased to a perceived intensity of a
4-8 out of 10 by the participant (this level of intensity is ideal for maximum stimulation while still
allowing for full movement through prescribed exercises in session). Participants underwent a series of
physical therapy exercises as directed by their certified practitioner. The specific exercises used
depended on the targeted area, designed to activate the muscles, increase blood flow, stimulate the
nerves, and increase movement in the areas experiencing limited range of motion or pain. The
prescribed exercises were performed in sets, with the electrical current from the NEUBIE on during
active periods of movement, and off while in resting periods. Stimulation frequencies used for training
varied by exercise type, ranging from 40-55 pulses per second (PPS) for exercises designed to cause
greater contraction or motor recruitment in the muscles to 500 PPS for exercises designed to reduce
tone or aid in the elongation of muscles.



Throughout the baseline, intervention, and wash-out phases, participants wore a Biostrap EVO
wrist-band PPG device. Biometrics and sleep staging were derived from each sleep session as daily
outcomes, as this is when many biometrics are closest to basal values. Upon waking each morning, a
survey with likert-scale questions around pain, perceived sleep, and perceived wellness were
administered through the Biostrap mobile application for iOS and Android devices.

Baseline Intervention Wash-Out
Weeks: 1-2 Weeks: 3-6 Week 7

No Intervention
Nightly biometrics

Morning Survey

8 Neubie Sessions
Nightly biometrics

Morning Survey

Discontinued Use
Nightly biometrics

Morning Survey

Participants with specified contraindications including pregnancy, use of a pacemaker, active or recent
cancer, active or recent blood clots, or history of epilepsy were excluded from this study. Additionally,
participants who had recently utilized any form of electrical stimulation therapy or with a history of
neurological disease were also excluded.

Devices

Neufit NEUBIE
The NEUBIE (NEUro-BIo-Electric) Direct Current Neuromuscular Electrical Stimulation (NMES) Device
(Neufit; Austin, TX, USA) is a device that uses electrical frequencies to stimulate muscle activation, blood
flow, and various aspects of the nervous system. NMES is a safe and noninvasive therapy that has been
utilized in physical therapy and pain management, and has been shown to affect reflex patterns11-14,
brain activity15-18, muscle output19-20, and pain21-23. NMES is administered via devices which send electrical
impulses through the skin to nerves in tissue to elicit muscle contractions and sensory impulses24-25.
These impulses mimic action potentials from both the peripheral and central nervous systems26. The
impulses are interpreted by sensory and motor neurons to activate contractile and sensory muscle fibers
and 1a/1b afferents, resulting in the stimulation of muscle, tissue, and nerve activation, as well as
increasing blood flow25-30. The NEUBIE device uses a direct current (DC) frequency via conductive pads
placed at the targeted area, and an additional waveform to dissipate heat caused by the DC stimulation.
DC fields have been shown to accelerate the body’s own physiological processes of healing, repair, and
regeneration31-36, and to have unique effects on the nervous/neuromuscular system36-38. Treatments with
the NEUBIE are active rather than passive; traditional NMES treatments have patients lying down,
passively accepting current. In contrast, the DC signal of the NEUBIE permits movement, even at
therapeutic levels of stimulation. This allows for optimal, eccentric contractions, which has been noted
to play a role in effective rehabilitation39-42.

The physiological and neurological responses to NMES provide evidence-based therapeutic effects.
Specifically, Incorporating NMES into physical training and therapeutic rehabilitation programs have been
shown to enhance long-term outcomes by supporting adaptation of cells in muscles, blood vessels, and



nerves43. E-stim is considered safe with minimal side effects or contraindications when used properly.
The NEUBIE device is FDA cleared for the following indications:

● Maintaining or increasing range of motion
● Increasing local blood circulation
● Neuromuscular re-education
● Preventing atrophy
● Reducing spasms
● Preventing venous thrombosis after surgery
● Management or relief of chronic pain
● Management of post-surgical and post-traumatic acute pain

Biostrap EVO
The Biostrap EVO (Biostrap; Bradbury, CA, USA) is a clinical-grade, wrist-worn biometric sensor which
captures high-fidelity raw photoplethysmography (PPG waveform), accelerometer, and gyroscope data.
Each waveform is analyzed via advanced cloud processing techniques to ensure data integrity to derive
biometric outputs including heart rate, heart rate variability, respiratory rate, oxygen saturation, arterial
compliance, physical activity, and sleep parameters. Biostrap has integrated survey tools to collect
participant self-reported data.

Results & Discussion

Resting Heart Rate
Chronic pain can place additional strain on many physiological systems, including the heart and
circulatory systems, while additionally limiting the ability to engage in regular physical activity. While an
acute increase in resting heart rate (RHR) was recognized in the early stages of the intervention phase,
the majority (63%) of participants completed the washout phase with a RHR value below baseline
without increasing levels of physical activity.

The American Heart Association recommends lowering RHR as much as possible5. Typically accomplished
through exercise training6, dietary changes, meditation, or interventions aimed at reducing physiological
stress, a decrease in RHR reflects increased cardiovascular efficiency and decreased systemic stress.

Heart Rate Variability
Patients with chronic pain tend to exhibit lower heart rate variability (HRV), which has been associated
with poor adaptability, psychological flexibility, and stress7. In a systematic review of 2283 studies,
researchers concluded that indices of HRV can be used to index the activity of the neurophysiological
pathway responsible for adaptively regulating inflammatory processes in humans8 and may therefore
represent a valuable metric to track in populations with chronic pain.

Throughout all phases of this study, the participant’s nocturnal HRV was collected. Preliminary analysis
revealed day-to-day improvement trends in HRV during the intervention phase, with the majority (63%)



of the participants completing the study with a higher HRV value than baseline. Additionally, these
improvements were maintained throughout the washout phase after therapy was discontinued.

Sleep
Significant clinical evidence suggests that sleep and pain are related. However, many questions remain
about the direction of causality and mechanisms that may account for their association. In a critical
review of recent prospective and experimental literature (2005-present), researchers found that
micro-longitudinal studies employing deep subjective and objective assessments of pain and sleep
support the notion that sleep impairments are a stronger, more reliable predictor of pain than pain is of
sleep impairments9. Patients with chronic pain may often experience frequent micro-arousals or
awakenings per evening, thereby decreasing their amount of restorative deep sleep.

Throughout each of the study phases, the majority of participants (56%) experienced improved sleep
efficiency marked by less awakenings per evening, and less amount of time awake in bed, resulting in an
average improvement of 7% in overall recovery throughout the intervention phase. The improvements in
decreased awakenings were maintained throughout the washout period.

Pain & Range of Motion
Limited range of motion (ROM) has been associated with various conditions including orthopedic-related
pain10 and can have an impact on a patient’s daily functioning and overall quality of life. Throughout this
study, participants self-reported their perceived pain and ROM each morning immediately upon
awakening. On average, participants' pain decreased by 21% and ROM increased by 27% throughout this
investigational study. Surprisingly, the greatest improvement in pain and ROM were experienced during
the washout period. This improvement during the washout phase post-intervention may be a result of
extended recovery time after 4 weeks of continuous intervention.

Conclusion
Neubie Direct Current NMES therapy, when performed by a certified practitioner, may provide
quantitative therapeutic benefits including improvements in self-reported pain, range of motion, sleep
efficiency and physiological biometrics in a population with orthopedic pain but without neurological
disease.

Further research with larger and more diverse populations with chronic pain is required to establish the
statistical significance of these outcomes.
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